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Chapter 1

Introducing the Reaction
Framework

Reaction is a flexible asynchronous programming framework which may be used
to implement complex event-driven applications. It is heavily influenced by the
Twisted programming framework developed by TwistedMatrix Labs [3] for the
Python programming language. While event-driven programming is not a new
concept, the approach adopted by the Reaction and Twisted frameworks has a
certain elegance which makes it applicable to a wide range of problem domains.

1.1 Why Asynchronous Programming?

Generally speaking, asynchronous programming is applicable to problems where
the programmer has to deal with multiple tasks which can take an arbitrarily
long time to run. This may be down to the tasks in question requiring a signif-
icant amount of computation or needing to interact with a remote system. In
a naive programming approach these tasks might be wrapped inside standard
functions. A function call can then be issued by the application when the task
is to start and it will return to the application once the task is complete.

This naive approach suffers from the fairly obvious problem that the appli-
cation is blocked from further execution until the long running task is complete.
It also prevents multiple such tasks from executing concurrently. More realistic
implementations would make use of an additional thread to process the long
running task. This allows the application to continue execution and even start
up additional long running tasks in parallel with the first. The application may
then periodically poll the long running tasks to check for completion.

The model of farming out long running tasks and then either polling for or
waiting on completion is a common design pattern — so much so that it has
been formalised in the Java 5.0 concurrency library [5] using the Callable and
Future interfaces.
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Listing 1.1 A Simple Callback Interface

public interface Callback {
public void onCallback (Object result);
}

Listing 1.2 A Simple Long Running Task Interface

public interface LongRunningTask {
public void run (Callback callback, Object params);
}

The reaction framework takes a different approach to handling task comple-
tion in that it makes use of the callback idiom, whereby long running tasks issue
callbacks to the application on completion. This eliminates the need for the ap-
plication to poll for or wait for the task to complete. Callbacks are commonly
used in programming languages such as C/C++ which provide native function
pointers, but are rarer in Java based applications due to the lack of function
pointer support. That said, it is actually quite easy to implement Java based
callbacks by defining a suitable callback interface, as shown in Listing 1.1.

Given an application object which implements this interface, it is then pos-
sible to support callbacks from long running tasks by passing a reference to the
callback interface when the task is started up, as shown in Listing 1.2.

On completing execution, the long running task then only needs to make a
call to callback.onCallback(result) in order to pass the result of executing
the task back to the application.

As can be seen from the preceding example, using callbacks to indicate
completion of long running tasks can provide a very elegant API. However, this
does not address the underlying threading and synchronisation issues which are
inherent in a callback based design. To make such a programming model work
it therefore becomes necessary to provide an underlying framework which hides
these complexities from the application developer.

1.2 Adding a Reactor

An asynchronous programming framework which supports the callback model
has many similarities to conventional event-driven frameworks such as GUI
toolkits. Central to this is the concept of an event loop which detects events
and dispatches callbacks to any registered event handlers. In the context of a
GUI toolkit an event would typically be a button click or keystroke; for the
asynchronous programming framework the event would signal the completion
of a long running task.

A significant consideration is that the use of an event loop implies that
all callbacks will be made within the context of the event loop thread. This
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Listing 1.3 A Basic Threadable Interface Definition

public interface Threadable {
public Object run (Object data)
throws Exception;

essentially removes the need for the application developer to deal with thread
synchronisation, at the expense of the constraint that callback methods cannot
block or be long running.

Within the Reaction asynchronous programming framework, the component
which provides the event loop is referred to as the reactor. This term originally
derives from the reactor design pattern [7], although the features of the reactor
used in the Reaction framework have been expanded considerably from the
standard pattern description.

In addition to providing the event loop for dispatching callbacks, the reactor
is also responsible for scheduling long running tasks. This means that instead
of the application starting up such a task directly it can delegate the whole
messy business to the reactor. In fact this can be reduced to the point where
the long running task only needs to implement a single conventional method, as
illustrated by Listing 1.3.

This is a basic version of the interface definition for long running tasks which
is implemented by the Reaction framework. In keeping with the interface nam-
ing, such tasks will subsequently be referred to as threadable objects. Execution
of the run method will be farmed out to a worker thread by the Reactor and
on completion the Reactor will take the returned value and pass it back to the
application as the callback parameter. All thread creation and synchronisation
is taken care of by the reactor component.

1.3 Callback Error Handling

Any attempt to execute the run method on a threadable object can result in
an exception being thrown. This is to be expected, as bad things do happen
and exceptions are the correct way of dealing with such an eventuality. The
problem with throwing an exception in this context is that information about
the exception condition needs to be propagated back to the application so that
it can take the appropriate action. This is solved by extending the application’s
callback interface as shown in Listing 1.4.

Again, this is a basic version of the interface definition which is used to define
callbacks for the Reaction framework. As well as the original callback method,
the onErrback method has been added which may be used for passing back
exception conditions detected while executing a threadable object. In keeping
with the name of the extended interface, objects which implement Deferrable
are subsequently referred to as deferrable objects.
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Listing 1.4 A Basic Deferrable Interface Definition

public interface Deferrable {
public Object onCallback (Deferred deferred, Object data)
throws Exception;
public Object onErrback (Deferred deferred, Exception error)
throws Exception;

Transmit Path Callback Chain
A
A
Application
txDataP2 < , rxDataP2
Protocol Layer 2
txDataP1 < , rxDataP1
Protocol Layer 1
txDataPO rxDataP0
‘y L e (]
v + Remote Transaction

Figure 1.1: Callback Chaining for Protocol Stacks

1.4 Callback Chaining

A further enhancement to the callback idiom is the concept of callback chaining.
This is particularly useful in the context of layered protocol stacks, such as those
conforming to the OSI protocol model. An example of such a layered protocol
stack is shown in Figure 1.1.

The example illustrates a request for remote data via the protocol stack. As
the request is passed down the protocol stack, the request data is modified ac-
cording to the protocol requirements — implementing packetisation, encryption,
framing etc. At the same time, it is also possible to build up a callback chain
for handing the response.

The presence of a callback chain for the transaction then allows the response
data to be passed back up the stack using the callback mechanism. Within
each callback method the received data may then be processed according to the
layered protocol requirements. This is the reason that the simplified onCallback
method returns a data Object — the returned value of each callback can be passed
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Listing 1.5 A Basic Signalable Interface Definition

public interface Signalable {
public void onSignal (Signal signal, final Object data);
}

Listing 1.6 A Basic Timeable Interface Definition

public interface Timeable {
public void onTick (Object data);
}

directly into the next callback in the chain for further processing.

While conceptually elegant, the process of dynamically constructing and
then executing callback chains is a non-trivial exercise. Fortunately the Reac-
tion framework provides a simple mechanism for managing this process called
deferred events. These will be discussed in more detail in Chapter 5.

1.5 Signal Events

In Section 1.2 the Reactor component was described as being similar to a con-
ventional event loop. This means that it is quite capable of processing external
events such as GUI button presses or the receipt of an automatic data sensing
event. In the context of the Reaction framework, this type of event is distin-
guished by referring to it as a signal event.

Objects which can receive signal events are referred to as signalable objects
and implement the Signalable interface. A basic version of this interface is
shown in Listing 1.5.

Multiple signalable objects may be attached to a single signal source, with
the signal parameter data being passed to each signalable object in turn. The
implementation of signalable objects and their relation to signal events is dis-
cussed in more detail in Chapter 4.

1.6 Timed Events

A final type of event supported by the Reaction framework are timed events. In
many applications it is necessary to schedule timeouts on long running trans-
actions, and this is one application of timed events. An alternate use is to
generate periodic events for triggering tasks which must be carried out at regu-
lar intervals. Objects which can receive timed events are referred to as timeable
objects and implement the Timeable interface. A basic version of the Timeable
interface is shown in Listing 1.6.
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Listing 1.7 Type Safe Timeable Interface Definition

public interface Timeable<T> {
public void onTick(T data);
}

Timed events are probably the simplest form of event in the Reaction frame-
work repertoire, which is why they are the first to be discussed in detail in
Chapter 3.

1.7 Using Java Generics For Type Safety

One thing that is noticeable about the basic interface definitions previously
presented is that many of them pass an arbitrary data parameter which uses
the Java root object type, Object. This is because the Reaction framework
treats all internal event data as opaque, arbitrary objects. This may seem to
be an anathema in the context of a strongly statically typed language such as
Java, but there are valid reasons for making this design decision.

A key property of the Reaction framework is that it allows for the run-time
dynamic configuration of program flow by attaching and triggering callbacks.
This dynamic behaviour means that the Reaction framework has no a-priori
information about the parameter data types to be used for these callbacks - and
the only reasonable assumption to make is that they are all subclassed from the
common Java root object type.

Even though all callback parameter data is internally treated as arbitrary
opaque objects, type safety may be restored at the interfaces by making use of
Java generics. An example of the use of Java generics to enforce type safety on
a timeable interface is shown in Listing 1.7.

The type safe implementation of the interface parameterises the basic ver-
sion shown in Listing 1.6 by the addition of the generic type specifier <T>. This
enforces a compile time constraint on the interface, such that only objects of
type T may be passed to the onTick callback method. All the basic inter-
face specifications previously presented in this introduction will adopt similar
type parameterisation in order to enforce type safety throughout the Reaction
framework.

1.8 Target Platforms

The Reaction programming framework is intended for use as either a standalone
package in plain old Java objects (POJO) based applications or as a service
module within the OSGi framework [2].

The majority of this book describes the framework as a standard POJO
package, since this is the easiest way of demonstrating the various features.
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Chapter 8 expands on this to discuss the use of the Reaction framework as an
OSGi service, for those interested in this mode of operation.

The extensive use of Java generics in order to provide support for type safe
callbacks means that the Reaction framework is only suitable for use with Java
compilers from release 5.0 onwards. However, the Reaction framework adopts
the same approach to backward compatibility as used in OSGi release 4.3. This
means that the Reaction framework can still be compiled for the JSR14 compiler
target which is required for Java CDC support.

1.9 The Reaction Packages

Before introducing the various components of the Reaction framework in detail,
it is worth reviewing the package structure of the framework distribution. The
root package name is com.zynaptic.reaction and this is subdivided into the
following packages:

com.zynaptic.reaction

This is the API package which provides the complete external APT for the
Reaction framework. Application code only needs to include the API package in
order to make full use of an active reactor. When running as an OSGi service,
the API package is the only package exported by the Reaction service.

com.zynaptic.reaction.core

The core package provides the main functionality of the Reaction framework.
In addition, it provides the API which is used for managing the lifecycle of the
reactor component. When using the Reaction framework in a POJO application,
the application is able to use this API to initialise and run the application. When
used as an OSGi service this process is automated by the OSGi bundle activator.

com.zynaptic.reaction.util

The utility package contains common support classes for the Reaction frame-
work. It is provided because certain aspects of the framework setup, such as
logging and the monotonic clock source will vary between deployments. The rel-
evant components have been collected in the utility package in order to provide
a range of alternate implementations.

com.zynaptic.reaction.osgi

The OSGi package includes the additional infrastructure code which is re-
quired to wrap the Reaction framework as an OSGi service.

com.zynaptic.reaction.examples.reactor
com.zynaptic.reaction.examples.timer
com.zynaptic.reaction.examples.signal
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com.zynaptic.reaction.examples.deferred
com.zynaptic.reaction.examples.thread
com.zynaptic.reaction.examples.osgi
com.zynaptic.reaction.examples.swing
com.zynaptic.reaction.examples. javafx

The example packages contain source code for the various programming
examples described in this text. Where an example is given in the text, the
corresponding file in the examples package will be indicated.

1.10 Chapter Summary

This chapter provided a very brief outline of the asynchronous programming
model and introduced some of the features that the Reaction framework provides
in order to support it. However, in order to really appreciate the advantages
that asynchronous programming can bring it is necessary to dig a little deeper.
The following chapters introduce the various aspects of the Reaction framework
in more detail.



Chapter 2

The Reactor Core

Central to the Reaction framework is the reactor core. This component is re-
sponsible for scheduling events, thread management and acting as a factory
for other framework objects. This chapter introduces the reactor core and its
ancillary components and describes the steps required in order to start up the
reactor ready for use by the application. However, before activating the reactor
itself, we need to put in place a monotonic clock and some logging support.

2.1 The Monotonic Clock

The first ancillary component required by the reactor is a monotonic clock.
A monotonic clock is essentially a counter which when read returns a value
which is guaranteed never to be less than any previously read value and which
increments at a fixed rate. This seems to be such an obviously useful feature
that there must be a standard Java implementation; and there is — sometimes.

Early versions of Java only provided the System.currentTimeMillis call,
which returns the integer number of milliseconds since the UNIX epoch at mid-
night on the 1st of January 1970. This is the wallclock time which can typically
be adjusted by the system user. Because the wallclock time is adjustable in this
way, the values returned by System.currentTimeMillis cannot be guaranteed
to be monotonic — being prone to large jumps forwards and backwards as the
wallclock time is adjusted.

The situation was improved with the addition of the System.nanoTime call
to Java 5.0. This will attempt to use the host system’s monotonic clock when
available. However, not all host systems provide a monotonic clock and under
those circumstances System.nanoTime falls back to using the non-monotonic
wallclock.

A final complication is that if the host does not have a standard monotonic
clock, there may be one available as a hardware peripheral. This may be the case
when running on an embedded platform or using a hardware security peripheral.

Given that there is no standard way of effectively implementing a monotonic

15
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Listing 2.1 Interface Definition for Monotonic Clock Source

package com.zynaptic.reaction.util;

public interface MonotonicClockSource {
public void init ();
public long getMsTime ();

}

clock source across all possible target platforms this functionality has been fac-
tored out of the reactor core. Alternate monotonic clock implementations can
therefore be provided as part of the utility package. The common interface to
a monotonic clock implementation is defined in Listing 2.1.

The init method is called on reactor startup and is used to reset the mono-
tonic clock to zero. This means that any value subsequently read back is equiv-
alent to the reactor’s uptime. The getMsTime method returns the current value
of monotonic clock’s timer counter. This encodes the number of milliseconds
since the clock was reset as a Java native long integer.

There are three standard implementations of the monotonic clock source
present in the utility package. Each one is applicable to a different host envi-
ronment, as discussed in the following sections.

2.1.1 Fixed Up Wallclock

This monotonic clock source is the most generally applicable implementation
and should work across all supported platforms. It uses the standard wallclock as
a clock source and then attempts to detect and correct for any user adjustments.
This ensures that the clock source is monotonic, but it will increment at an
unpredictable rate whenever adjustments to the wallclock are made. This is
the default option since it is applicable to all platforms and is provided in the
utilities package as FixedUpMonotonicClock.

2.1.2 Java Monotonic Clock

This monotonic clock source may be used when running the Reaction frame-
work in a Java environment which provides System.nanoTime and the un-
derlying operating system is known to provide the JVM with a monotonic
clock. This is typically the case with POSIX compliant systems that provide
CLOCK_MONQOTONIC support. This option is provided in the utilities package as
JavaMonotonicClock.

2.1.3 Native Monotonic Clock

This monotonic clock source may be used when running the Reaction framework
on a platform which provides a non-standard native monotonic clock, often as
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Listing 2.2 Interface Definition for Reactor Log Target

package com.zynaptic.reaction.util;

import java.util.MissingResourceException;
import com.zynaptic.reaction.Logger;

public interface ReactorLogTarget {
public Logger getLogger(String loggerId, String loggerResources)
throws MissingResourceException;

Listing 2.3 Public Reactor API for Accessing Reactor Log Target

package com.zynaptic.reaction;
import java.util.MissingResourceException;

public interface Reactor {
public Logger getLogger(String loggerId);

public Logger getLogger(String loggerId, String loggerResources)
throws MissingResourceException;

a dedicated hardware peripheral. This assumes that monotonic clock support
is provided using native routines accessed via the Java native interface [6]. The
class definition is provided in the utilities package as NativeMonotonicClock
but no native library is provided as this is obviously platform specific.

2.2 Logging Support

The second ancillary component which is required by the reactor is a message
logger. There are a number of Java logging frameworks available and the choice
of the ‘best’ logging framework will differ between applications. Therefore the
logging functionality has been factored out of the reactor core, allowing different
logging framework wrappers to be provided as part of the utility package.

The common logging interface is defined as shown in Listing 2.2. This acts
as a factory which allows multiple logger objects to be created for different parts
of the overall system. These factory methods are exposed via the public reactor
APT as shown in Listing 2.3.

The public interface for each of the logger components is shown in Listing 2.4
and makes use of the logging level enumeration provided by the standard Java
logging library. Logger objects will usually be created using unique identifiers
that employ the conventional hierarchical naming system. This means that
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Listing 2.4 Interface Definition for Reactor Logger Objects

package com.zynaptic.reaction;
import java.util.logging.Level;

public interface Logger {
public void log(Level level, String msg);
public void log(Level level, String msg, Throwable thrown);
public String getLoggerId();
public Level getLogLevel();
public void setLogLevel(Level logLevel);

the core reactor functionality will be logged with the identification name of
‘com.zynaptic.reaction’.

The common logging interface is a fairly standard logging API, providing a
set of defined log message severity levels and some methods for logging messages
at one of these severity levels. This can easily be mapped onto existing logging
frameworks using one of the wrappers described in the following subsections.

2.2.1 System Console Output

The simplest logging option involves printing all log messages to the console
output. This can be useful during early development and is the default op-
tion used in the examples presented in this document. The system console log
component is present in the utilities package as ReactorLogSystemQOut.

2.2.2 Java Standard Logging Library

The most complete logging support is currently provided by a wrapper for the
standard Java logging library (java.util.logging). This maps the members
of the generic interface shown in Listing 2.4 onto the equivalent calls used by
the conventional Java logger components. When used in this manner, the log-
ging subsystem behaves in the same way as would be expected when directly
accessing the standard Java logging library.

2.2.3 OSGi Logging Service

A wrapper around the OSGi log service API is included for situations where the
Reaction framework is being run in an OSGi context. The wrapper is designed
for use when the OSGi log service is declared as an optional import package
for the Reaction bundle. This means that the OSGi logging package must be
available when the Reaction bundle is resolved in order for it to be used.

If the OSGi logging service is not available on startup — or subsequently
becomes unavailable during operation — logging is redirected to a backup log
service instead. The backup log service to be used is specified as part of the
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Listing 2.5 Reactor Interface Accessor Methods

package com.zynaptic.reaction.core;

public final class ReactorCore... {
public static Reactor getReactor() {...}
public static ReactorControl getReactorControl() {...}

Listing 2.6 Reactor Control Interface Definition

package com.zynaptic.reaction.core;

public interface ReactorControl {
public void start(MonotonicClockSource clockSource,
ReactorLogTarget logTarget)
throws ThreadableRunningException;
public void stop();
public void join()
throws InterruptedException;

constructor for the OSGi log service wrapper and will typically be an instantia-
tion of the console output logger. The OSGi log service wrapper component is
present in the OSGi package as ReactorLogOsgiOptional.

2.3 The Reactor Singleton Object

Within any application there will only be a single reactor component. This
is implemented as the ReactorCore singleton, which provides static accessor
methods for obtaining a handle on its various interfaces. The accessor methods
of interest are shown in Listing 2.5. All access to the reactor itself should be
via these two interfaces - the Reactor interface providing the user API and the
ReactorControl interface providing control over the reactor lifecycle.

2.4 The Reactor Control Interface

The reactor control interface is used to control the reactor lifecycle and is a part
of the core package. Direct access to this API is only required for application
startup code and it should not be accessed by more general application code.
The reactor control interface is defined as shown in Listing 2.6.

The reactor creates its own thread for running the event loop, so three
reactor control functions are provided for controlling it from the main program
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Listing 2.7 Simple Reactor Startup Example

public class ReactorStartupExample {
public static void main(String[] args) throws InterruptedException {

// Obtain a handle on the reactor control interface.
ReactorControl reactorCtrl = Reactor.getReactorControl();

// Start reactor with new monotonic clock and log service.
reactorCtrl.start
(new FixedUpMonotonicClock(), new ReactorLogSystemOut());

// Let the reactor run for a few seconds.
Thread.sleep(5000) ;

// Request that the reactor stop running.
reactorCtrl.stop();

// Wait for the reactor to stop running.
reactorCtrl. join();

thread. Note that the API calls are synchronised, so they may be called from
other thread contexts if required. The first method is the start method which
passes in references to the monotonic clock and log service components which
are to be used by the reactor. Calling this method creates the reactor thread
and starts the reactor running before returning to the main thread.

In order to stop the reactor, a call to the stop method will initiate reactor
shutdown, requesting that the reactor thread be stopped and all outstanding
events either cancelled or dispatched. The stop method returns immediately
and the main application thread must then wait for the reactor shutdown to
complete. This is done by calling the join method which will block until the
reactor thread has exited.

2.5 Starting and Stopping the Reactor

The process of starting and stopping the reactor may be carried out using only
the ReactorControl interface, typically in the context of the main application
thread. A simple example of starting and stopping the reactor from the main
application thread is shown in Listing 2.7. This is present in the reactor
examples package as ReactorStartupExample.

This example includes all the code which is required for managing the Re-
actor lifecycle in a standard Java application. When the reactor is run as an
OSGi service this will all be done automatically, since the reactor lifecycle is
managed by the OSGi container.
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Listing 2.8 Reactor Uptime Getter Method

package com.zynaptic.reaction;
public interface Reactor {

public long getUptime();

Listing 2.9 Example Code for Accessing Reactor Uptime

long reactorUptime;
do {
Thread.sleep(1000);
reactorUptime = reactor.getUptime();
System.out.println("Current reactor uptime = " +
reactorUptime + " ms.");
} while (reactorUptime < 10000) ;

2.6 Obtaining The Reactor Uptime

The reactor’s user interface provides a mechanism for reading back the current
time, as given by the monotonic clock source. This may be interpreted as the
current uptime of the reactor component, specified as an integer number of
milliseconds using a Java native long integer. The API for accessing the current
reactor uptime is illustrated in Listing 2.8.

The reactor’s getUptime method may be called from any thread context
in order to obtain the current uptime. An example of this method call in use
is illustrated by the code fragment shown in Listing 2.9. This code fragment
may be used to replace the delay introduced by the Thread.sleep call in the
reactor lifecycle example of Listing 2.7. A full implementation of this example
is included in the reactor examples package as ReactorUptimeExample.
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Chapter 3

Working With Timers

The simplest form of event provided by the Reaction framework is the timed
event. These are events which occur a set period of time after the event was
requested and which are handled by event handlers implementing the Timeable
interface. This chapter describes the Reaction timer API and provides a number
of examples of the API in use.

3.1 The Reaction Timer API

The methods used for managing timer events are provided by the standard
reactor interface (Reactor), as defined in the API package. The full set of
methods used for timer management are shown in Listing 3.1.

The three timer API methods provide support for issuing a single timed call-
back (runTimerOneShot), issuing multiple timed callbacks at regular intervals
(runTimerRepeating) and cancelling a running timer (cancelTimer). In each
case a single timeable object which provides the Timeable interface is passed as
a parameter. This is the timeable object to which the callbacks will be issued
and is also used as a timer ‘ID’ when cancelling or rescheduling a timer. The
use of these various API methods is described in more detail in the following
sections.

3.2 Running One-Shot Timers

One shot timers are used to generate a single timed event a specific period of
time after the timed event was requested. There are no constraints over which
thread actually issues the request, so it is perfectly legitimate to request a timed
event from the main application thread, as shown in Listing 3.3. This code is
present in the timer examples package as OneShotTimerExamplel.

The example shown in Listing 3.3 uses the timed callback to shut down the
reactor after a specific amount of time. The reactor startup code is identical
to that previously described in Section 2.5. However, rather than issuing the
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Listing 3.1 Reactor Timer Management Methods

package com.zynaptic.reaction;
public interface Reactor {

public <T> void runTimerOneShot
(Timeable<T> timeable, int msDelay, T data)
throws ReactorNotRunningException;
public <T> void runTimerRepeating
(Timeable<T> timeable, int msDelay, int msInterval, T data)
throws ReactorNotRunningException;
public void cancelTimer(Timeable<?> timeable);

Listing 3.2 The Timeable Interface Definition

package com.zynaptic.reaction;

public interface Timeable<T> {
public void onTick(T data);
}

reactor stop request from the main thread it is instead implemented within a
timeable callback.

In order for the timeable callback to issue the reactor stop request it must
have a handle on the reactor’s control interface. In the example this is passed as
the timer’s reactorCtrl parameter. The reactorCtrl parameter is a reference
to the reactor control interface which is held by the timer and then passed on
to the timeable callback once the timer has expired. The use of a generic type
specification ensures that only objects of the correct type may be passed in this
manner.

In the event that an invalid reactorCtrl parameter is passed to a timeable
callback an exception will be thrown. All exceptions thrown by timeable call-
backs are caught by the reaction framework and will be logged with a log level of
warning. The continued operation of the reactor is unaffected. In the example,
the second timer request passes a null reference and will therefore generate an
exception.

One thing which must be taken into account when using timers is that
the specified delay must be treated as a minimum delay parameter. This is
because the timer callback will be issued an arbitrary — but usually small — time
after the delay period has expired. This delay may be caused by underlying
operating system context switches, Java thread scheduling artefacts or long-
running callbacks which are active at the point when the delay period expires.
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Listing 3.3 Running a One Shot Timer

public class OneShotTimerExamplel {
public static void main(String[] args) throws InterruptedException {

// Get a handle on the reactor interfaces.
ReactorControl reactorCtrl = ReactorCore.getReactorControl();
Reactor reactor = ReactorCore.getReactor();

// Start the reactor using monotonic clock and log service.
reactorCtrl.start
(new FixedUpMonotonicClock(), new ReactorLogSystemOut());

// Request a callback from a one-shot timer.
reactor.runTimerOneShot (new TimerCallback(), 5000, reactorCtrl);

// Request a callback which will throw an exception.
reactor.runTimerOneShot (new TimerCallback(), 1000, null);

// Wait for the reactor to stop running.
reactorCtrl. join();

// The timer callback just stops the reactor when called.
private static class TimerCallback
implements Timeable<ReactorControl> {
public void onTick(ReactorControl reactorCtrl) {
reactorCtrl.stop();
}
}
}

Figure 3.1 shows the delay in issuing callbacks relative to the fixed reactor
timebase.

3.3 Cancelling One-Shot Timers

Once a timer is running it is possible to subsequently cancel the timer in order to
prevent it issuing its timeable callback. This may be illustrated by using timer
cancellation to prevent the erroneous callback in Listing 3.3 from triggering
and therefore generating an exception. Listing 3.4 shows the changes required.
The full code for this example is included in the timer examples package as
OneShotTimerExample2.

In Listing 3.4 a reference to the timeable callback object is passed to the
cancelTimer method. There is a one-to-one mapping between timers and time-
able callback objects which means that the reference to the timeable object can
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Figure 3.1: Timing Diagram For One Shot Timeouts

Listing 3.4 Cancelling a One Shot Timer

// Request a callback which will throw an exception.
Timeable<ReactorControl> badCallback = new TimerCallback();
reactor.runTimerOneShot (badCallback, 1000, null);

// Cancel the erroneous callback.
reactor.cancelTimer (badCallback) ;

be used to select the timer for cancellation. Note that this means that it is not
possible to attach multiple callbacks to a single timer.

Timer cancellation is particularly useful for implementing the timeout idiom.
In many applications there are long running tasks where a failure to complete
the task within a specified time constitutes an error. An example might be a
request from a remote database which if not serviced within a given time implies
that the remote database server is inaccessible. This works by requesting a timer
callback on issuing the remote request and cancelling it on receiving a response.
In the event that a callback to the timeable callback object is actually issued
this will be interpreted as a timeout error.

3.4 Rescheduling One-Shot Timers

In addition to being able to cancel running timers, it is also possible to resched-
ule them — effectively resetting the timer delay to a new value. This may be
demonstrated by using timer rescheduling to delay the reactor shutdown in List-
ing 3.3. The changes required are shown in Listing 3.5. As may be seen from the
example, rescheduling a timer is simply a case of calling the runTimerOneShot
method with a reference to the associated timeable callback object and the new
timer delay. The full code for this example is included in the timer examples
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Listing 3.5 Rescheduling a One Shot Timer

// Request a callback from a one-shot timer.
Timeable<ReactorControl> timerCallback = new TimerCallback();
reactor.runTimerOneShot (timerCallback, 5000, reactorCtrl);

// Reschedule callback after a short delay.
Thread.sleep(2500);
reactor.runTimerOneShot (timerCallback, 5000, reactorCtrl);

package as OneShotTimerExample3.

Timer rescheduling may be used to implement the watchdog timer idiom.
This provides a mechanism for monitoring a remote system which provides a
regular ‘heartbeat’ or ‘liveness’ notification. Each time a heartbeat event is re-
ceived the timer is rescheduled, preventing it from issuing the timer callback.
However, if the remote system becomes inoperable it will stop sending heartbeat
messages and the timer will expire. This causes the timer to issue a callback to
the timeable callback object. The callback may then be interpreted as notifica-
tion that the remote system is no longer available.

3.5 Running Repeating Timers

Repeating timers are used to generate multiple timed event callbacks at fixed
intervals. Each timer is associated with a single timeable callback handler imple-
menting the Timeable interface. The onTick callback method of the timeable
callback object will then be called repeatedly at the specified interval until the
timer is either cancelled or rescheduled. In other respects, repeating timers
behave identically to the one-shot timers previously discussed.

An example of a repeating timer in use is shown in Listing 3.6. This is similar
to previous one-shot timer examples, except that a number of callbacks have to
be made before the callback handler stops the reactor. The full code for this ex-
ample is included in the timer examples package as RepeatingTimerExamplel.

When running a repeating timer there are two timing parameters which
are passed; the first sets the delay before the initial callback is made and the
second sets the interval between successive callbacks. In this example the first
callback will occur 5 seconds after the timer is initiated, with successive callbacks
occurring at 1 second intervals.

One thing to consider when using repeating timers is that while the timebase
interval is constant, each callback can be subject to an arbitrary — but usually
short — delay. As for the case with one-shot timers, these additional delays may
be down to waiting for a running callback to complete or may be artefacts of the
underlying operating system and the Java thread library. The variability in the
callback timing is referred to as the timer jitter and is illustrated in Figure 3.2.
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Listing 3.6 Running a Repeating Timer

public class RepeatingTimerExamplel {
public static void main(String[] args) throws InterruptedException {

// Get a handle on the reactor interfaces.
ReactorControl reactorCtrl = ReactorCore.getReactorControl();
Reactor reactor = ReactorCore.getReactor();

// Start reactor with new monotonic clock and log service.
reactorCtrl.start
(new FixedUpMonotonicClock(), new ReactorLogSystemOut());

// Request callbacks from a repeating timer.
reactor.runTimerRepeating
(new TimerCallback(), 5000, 1000, reactorCtrl);

// Wait for the reactor to stop running.
reactorCtrl. join();

// Timer callback handler stops the reactor after 5 callbacks.
private static class TimerCallback
implements Timeable<ReactorControl> {
private int callbackCount = 5;
public void onTick(ReactorControl reactorCtrl) {
callbackCount--;
if (callbackCount == 0) {
reactorCtrl.stop();
}
}
}
}
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Callback --olccccaaaaaaaaad :\ ............. ‘:\---.:\-.;.
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Figure 3.2: Example of Timing Jitter For Repeating Timers
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Figure 3.3: Example of Callback Merging For Repeating Timers

In extreme cases it is possible that a timer callback will be delayed by more
than the specified timer interval. In this case, two or more delayed callbacks
will be merged into a single timer callback, as shown in Figure 3.3. Such a
situation should be treated as an indication that the system is overloaded and
is unable to process all application callbacks in a timely manner. Therefore, all
such conditions are logged as warning conditions.

The most pathological case of timer event merging occurs when the callback
itself takes longer to execute than the specified timer interval. This is demon-
strated by adding an excess delay to the timer callback shown in Listing 3.6. The
full example demonstrating this behaviour is included in the timer examples
package as RepeatingTimerExample2. While the minimum viable timer inter-
val will be platform and application dependent, it is generally recommended
that only timer intervals in excess of a quarter of a second (250ms) are used.

3.6 Rescheduling Repeating Timers

The cancellation and rescheduling of repeating timers behaves identically to the
cancellation and rescheduling of one-shot timers. However, there is one non-
obvious way in which timers may be rescheduled. Specifically, it is possible to
reschedule a repeating timer as a one-shot timer and vice-versa. In practise this
is because a one-shot timer is equivalent to a repeating timer with the interval
field set to zero — interpreted as ‘don’t repeat’.

The example shown in Listing 3.7 demonstrates the way in which a repeating
timer may be rescheduled as a one-shot timer. This is a minor change to the
example previously given in Listing 3.6. On the penultimate call to the timeable
callback handler the timer is now rescheduled as a one-shot timer with a 5 second
delay. The full code for this example is included in the timer examples package
as RepeatingTimerExample3.
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Listing 3.7 Rescheduling a Repeating Timer as a One-Shot Timer

private static class TimerCallback
implements Timeable<ReactorControl> {
private int callbackCount = 5;
public void onTick(ReactorControl reactorCtrl) {
callbackCount--;
if (callbackCount == 0) {
reactorCtrl.stop();
} else if (callbackCount == 1) {
ReactorCore.getReactor () .runTimerOneShot
(this, 5000, reactorCtrl);

A final thing of note about the example shown in Listing 3.7 is that the timer
is being rescheduled within the timeable callback handler. This is legitimate
since the reactor is designed in such a way that there are no problems with
rescheduling or cancelling a timer from within its own callback handler.



Chapter 4

Using Signal Events

The signal event is intended for use in situations where a single event needs
to be propagated to multiple event handlers. In this case the event handlers
are signalable objects which implement the Signalable interface. This chap-
ter examines signal events in more detail and introduces the concept of signal
event objects which are used for managing signal propagation to signalable event
handlers.

4.1 The Signal Event API

Signal events are manipulated within the Reaction framework using signal event
objects. The reactor core acts as a factory for these objects and the standard
reactor interface (Reactor) provides the API shown in Listing 4.1.

The signal factory methods will return an object which implements the
Signal interface as shown in Listing 4.2. Such objects are referred to here
as being signal event objects since they encapsulate all the state associated with
a single signal. The Signal interface provides methods for subscribing and
unsubscribing signalable objects (ie, those implementing Signalable) and for
generating new signal events notifications.

4.2 Receiving Signal Events

Listing 4.4 provides the simplest possible demonstration of signal event han-
dling. The reactor provides a special signal which is used to indicate that the
reactor is shutting down — and it is possible to obtain a handle on this signal via
the getReactorShutdownSignal method on the Reactor interface. This call re-
turns a reference to the signal event object which is responsible for propagating
the reactor’s shutdown signal notification.

Signal event objects implement the Signal interface which allows signalable
event handlers to be attached and removed from the signal. In this example,
a signalable callback is attached to the reactor’s shutdown signal using the
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Listing 4.1 Reactor Signal Factory Methods

package com.zynaptic.reaction;
public interface Reactor {

public <T> Signal<T> newSignal();
public Signal<Integer> getReactorShutdownSignal() ;

Listing 4.2 Signal Event Interface Definition

package com.zynaptic.reaction;

public interface Signal<T> {

public void subscribe(Signalable<T> signalable)

throws SignalContextException, ReactorNotRunningException;
public void unsubscribe(Signalable<T> signalable)

throws SignalContextException, ReactorNotRunningException;
public void signal(final T data)

throws RestrictedCapabilityException, ReactorNotRunningException;
public void signalFinalize(final T data)

throws RestrictedCapabilityException, ReactorNotRunningException;
public Signal<T> makeRestricted();

subscribe method. When the reactor shutdown signal is triggered, it is then
propagated to all subscribed signalable event handlers. In this case there is only
a single handler, which prints a reactor shutdown message to the console. The
full source code for the example shown in Listing 4.4 is provided in the signal
examples package as ReactorShutdownSignal.

4.3 Generating Signal Events

The example given in Listing 4.4 demonstrated the way in which signalable event
handlers can be registered with a signal event object in order to receive signal
event notifications. In that example, signal events are generated internally to
the reactor core to provide notification of reactor shutdown. However, in the
general case signal events will need to be generated by application code instead.

The way in which signal events may be generated by application code is
shown in Listing 4.5. The full source code for this example is available in the
signal examples package as SignalEventExamplel.

New signal event objects are created using the newSignal factory method
on the Reactor interface. In common with the reactor shutdown signal in the
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Listing 4.3 The Signalable Interface Definition

package com.zynaptic.reaction;

public interface Signalable<T> {
public void onSignal(Signal<T> signalld, final T data);
}

Listing 4.4 Receiving Reactor Shutdown Signal Events

public class ReactorShutdownSignal {
public static void main(String[] args) throws InterruptedException {

// Start reactor with new monotonic clock and log service.
ReactorControl reactorCtrl = ReactorCore.getReactorControl();
Reactor reactor = ReactorCore.getReactor();
reactorCtrl.start

(new FixedUpMonotonicClock(), new ReactorLogSystemQOut());

// Add a signal event handler to the reactor shutdown signal.
Signal<Integer> shutdownSignal = reactor.getReactorShutdownSignal();
shutdownSignal.subscribe(new ShutdownSignalCallback());

// Let the reactor run for a few seconds.
Thread.sleep(5000) ;

// Request that the reactor stop running.
reactorCtrl.stop();
reactorCtrl.join();

// Just print a shutdown message to the comnsole.
private static class ShutdownSignalCallback
implements Signalable<Integer> {
public void onSignal(Signal<Integer> signal, Integer status) {
System.out.println("Reactor shutdown status = " + status);
}
X
}
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Listing 4.5 Generating Signal Events

public class SignalEventExamplel {
public static void main(String[] args) throws InterruptedException {

// Start reactor with new monotonic clock and log service.
ReactorControl reactorCtrl = ReactorCore.getReactorControl();
Reactor reactor = ReactorCore.getReactor();
reactorCtrl.start

(new FixedUpMonotonicClock(), new ReactorLogSystemQOut());

// Add a signal event handler to a new signal event object.
Signal<ReactorControl> signal = reactor.newSignal();
signal.subscribe(new SignalCallback());

// Generate a signal event and wait for reactor to stop.
signal.signal(reactorCtrl);
reactorCtrl. join();

}

// The signal handler stops the reactor.
private static class SignalCallback
implements Signalable<ReactorControl> {
public void onSignal
(Signal<ReactorControl> signal, ReactorControl reactorCtrl) {
reactorCtrl.stopQ);
}
}
}

previous example, signal event handlers may then be attached to the signal
event object using its subscribe method. Once signal event handlers have
been registered they will then receive any signal events which are generated by
calling the signal method on the signal event object.

One feature of signal event generation demonstrated by Listing 4.5 is the
passing of arbitrary data as part of signal event generation. In this example
a handle on the reactor’s control interface is passed, allowing the signal event
handler to shut down the reactor when called. Java generics are used to enforce
type safety, ensuring that the data type expected by the callback handler is
consistent with the parameter data type passed by the signal event object.

In normal operation, signal handlers which implement the Signalable inter-
face should not generate exceptions. There is no well defined way of propagating
such error conditions, so any exceptions generated in this manner will just be
caught by the reactor and logged as a warning. This may be demonstrated
by adding a call to the signal method which passes an invalid parameter, as
shown in 4.6. The full code for this example is included in the signal examples
package as SignalEventExample2.
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Listing 4.6 Generating Signal Events With Invalid Parameter Data

// Generate a signal event with invalid parameter.
signal.signal(null);

// Generate a signal event and wait for reactor to stop.
signal.signal(reactorCtrl);
reactorCtrl. join();

Listing 4.7 Simple Publisher Interface

public interface Publisher {
public Signal<Integer> getChangeNotificationSignal();
public String getPublisherData();

}

4.4 Subscribing and Unsubscribing

The signal event API provides a mechanism for signalable objects to subscribe
to a given signal in order to receive signal event notifications and also to unsub-
scribe from the signal when such notifications are no longer required. This makes
the signal mechanism ideally suited for implementing the Publisher-Subscriber
pattern [4].

In the Publisher-Subscriber pattern one component acts as a data source (the
publisher) and one or more components act as data consumers (the subscribers).
The publisher provides a number of data accessor methods and some mechanism
for notifying its subscribers of changes to that data. In the case of the Reaction
framework the notification mechanism is the signal event. An example interface
for a publisher component is shown in Listing 4.7.

This publisher interface is a minimal implementation with a single notifica-
tion signal and a single data accessor method. The data accessor converts the
internal data to a string and the change notification signal is triggered whenever
the internal data changes. A subscriber may then subscribe to the change no-
tification signal so that it is informed whenever the data value changes. This is
illustrated in the setup method of the simple subscriber implementation shown
in Listing 4.8.

Once subscribed, signal notifications which are received via the onSignal
method are used as a trigger for the subscriber to read back the latest publisher
data via the publisher’s accessor method. This will continue until the subscriber
component is unsubscribed from the publisher, as illustrated by the teardown
method in the example. Once unsubscribed, no further change notifications will
be received unless the subscriber re-subscribes to the publisher service. A full
implementation of this example is provided in the signal examples package as
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Listing 4.8 Simple Subscriber Implementation

public class Subscriber implements Signalable<Integer> {
private Publisher publisher;

// The setup method is used to subscribe to the publisher.
public void setup(Publisher publisher) {
this.publisher = publisher;
publisher.getChangeNotificationSignal() .subscribe(this);
System.out.println("Subscribed : " + publisher.getPublisherData());
}

// The teardown method will unsubscribe from the publisher.

public void teardown() {
publisher.getChangeNotificationSignal() .unsubscribe(this);
System.out.println("Unsubscribed.");

}

// On change notifications, read back the publisher data.
public void onSignal(Signal<Integer> signal, Integer signalData) {
System.out.println("Changed : " + publisher.getPublisherData());
}
}

Listing 4.9 Passing Sequence Number in Update Notifications

public void onTick(Integer timerData) {
counter += 1;
changeNotificationSignal.signal(new Integer (sequence++));

}

SignalSubscribeExample.

In the example implementation of the publisher service, it is worth com-
menting on the use of the signal data parameter. The example shows the data
parameter being used as a sequence number which is incremented each time the
update signal is triggered, as demonstrated in Listing 4.9. Use of this idiom is
considered good practise in that it provides a way for subscribers to synchronise
state with the publisher if required.

4.5 Finalising Signals

The signalFinalize method provided by the Signal interface is designed for
situations where a service is being shut down and all subscribed signalable ob-
jects need to be notified. It issues a standard signal notification to all subscribed
signalable objects and then automatically unsubscribes them from the signal.
By way of example, this is the mechanism used by the reactor to issue the
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Listing 4.10 Returning Restricted Capability Signal References

// Get a handle on the change notification signal.
public Signal<Integer> getChangeNotificationSignal() {
return changeNotificationSignal.makeRestricted();

}

reactor shutdown signal.

One thing to consider when using finalising signals is that there is no pre-
defined way of notifying the signal handlers of the difference between standard
and finalising signal callbacks. In some cases — such as the reactor shutdown
signal — a signal callback will only be issued once and this can be implicitly
interpreted as a finalising signal. In other situations it will be necessary to
encode the fact that the signal is a finalising signal as part of the signal data
parameter. A common approach is to use the passing of a null parameter here
as an indication of a finalising signal.

4.6 Restricting Signal Capabilities

In order to make the use of signal event objects more secure, subscribers to a
signal event should not normally be able to generate signal event notifications.
For example, it would be undesirable if application code could ‘fake’ a reactor
shutdown by calling the signal or signalFinalize methods on the signal event
object obtained via the getReactorShutdownSignal method. This is addressed
by the presence of the makeRestricted method on the signal event object,
which returns a restricted capability reference. Any attempt to call the signal
or signalFinalize methods on a restricted capability reference will then result
in a RestrictedCapabilityException being thrown.

Since the restricted and full capability signal references are distinct objects,
it is not safe to use the object identity test (==) to check equivalence between
them. However, the Object.equals and Object.hashCode methods are fully
implemented — so that different references to the same signal event objects are
considered to be equivalent for all other comparison tests. Note that the signal
event handle passed back to signalable callback handlers as the first parameter
in the onSignal method will always be a restricted capability reference.

It is generally good practice to restrict the capability of signal event objects
which are returned over a publisher interface, such as the one described in
Listing 4.7. This ensures that the only entity which can generate notifications
for those signal event objects is the publisher itself. Listing 4.10 demonstrates
the way in which this may be achieved for the publisher / subscriber example
previously presented in Section 4.4.
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4.7 Execution Context

Signals may be triggered from within any thread context by calling the signal
or signalFinalize method on a signal event object. However, subsequent ex-
ecution of the onSignal method of any attached signalable objects will always
take place within the main reactor thread context. By ensuring that all callbacks
take place within the same thread context, synchronisation between callbacks is
much simplified. One limitation is that signals may not be subscribed and un-
subscribed within the context of an onSignal callback handler and attempting
to do so will result in a SignalContextException being thrown.



Chapter 5

Managing Deferred Events

The deferred event is key to the asynchronous programming model since it
provides a highly flexible way of managing deferred callbacks. In this case, the
event handlers are deferrable objects which implement the Deferrable interface.
This chapter examines deferred events in more detail and introduces the concept
of deferred event objects which are used to manage callback chains consisting of
one or more deferrable objects.

5.1 The Deferred Event API

Deferred events are managed within the Reaction framework using deferred
event objects. The reactor core acts as a factory for these objects and the
standard reactor interface (Reactor) provides the API shown in Listing 5.1.

The newDeferred factory method will return an object which implements
the Deferred interface as shown in Listing 5.2. Such objects are referred to here
as being deferred event objects since they encapsulate all the state associated
with a single deferred callback event. The Deferred interface provides methods
for attaching deferrable objects (ie, those implementing Deferrable) and for
triggering callbacks on the deferred event.

Of the methods provided by the deferred event interface, the callback and
errback methods are used for triggering event callbacks and the addDeferrable
method is used to attach deferrable objects to the deferred event object in order
to receive those callbacks. The setTimeout and cancelTimeout methods are
used for managing callback timeouts and the discard method provides a clean
way of ‘ignoring’ deferred callbacks. All these API methods will be discussed in
more detail in the following sections.

5.2 Simple Deferred Callbacks

The starting point for working with deferred event objects is to consider an
example of a long running task which will issue callbacks using the deferred
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Listing 5.1 Reactor Deferred Factory Methods

package com.zynaptic.reaction;

public interface Reactor {

public <T> Deferred<T> newDeferred();
public <T> Deferred<T> callDeferred(T data);
public <T> Deferred<T> failDeferred(Exception error);

Listing 5.2 Deferred Event Interface Definition

package com.zynaptic.reaction;

public interface Deferred<T> {
public void callback(T data)
throws RestrictedCapabilityException, DeferredTriggeredException;
public void errback(Exception error)
throws RestrictedCapabilityException, DeferredTriggeredException;
public <U> Deferred<U> addDeferrable
(Deferrable<T, U> deferrable, boolean terminal)
throws DeferredTerminationException;
public <U> Deferred<U> addDeferrable(Deferrable<T, U> deferrable)
throws DeferredTerminationException;
public Deferred<T> terminate()
throws DeferredTerminationException;
public Deferred<T> setTimeout(int msTimeout)
throws ReactorNotRunningException;
public Deferred<T> cancelTimeout();

public <T> defer()

throws DeferredContextException, Exception;

public void discard()

public Deferred<T> makeRestricted();

Listing 5.3 The Deferrable Interface Definition

package com.zynaptic.reaction;

public interface Deferrable<T, U> {
public U onCallback(Deferred<T> deferred, T data)

throws Exception;

public U onErrback(Deferred<T> deferred, Exception error)

throws Exception;
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Listing 5.4 Simple Timer-Based Long Running Task

public class LongRunningTask implements Timeable<Integer> {
private Deferred<String> deferred = null;

// Method used to initiate the long running task.
public Deferred<String> runTask() {
reactor.runTimerOneShot (this, 1000, null);
deferred = reactor.newDeferred();
return deferred.makeRestricted();

}

// Timer event is used to trigger deferred callback.
public void onTick(Integer data) {
deferred.callback(new String("Callback Parameter"));
}
}

event mechanism. One such example is given in Listing 5.4, which uses a timer
as a proxy for processing or I/O delays.

In this example, the long running task is initiated by making a call to the
runTask method, which returns a reference to a new deferred event object.
The onTick timer callback signifies the completion of the task, at which point
the deferred callback is triggered — passing the ‘result’ of the operation as the
callback parameter. A Java generic type specifier is used to identify the callback
parameter type, which in this case is set to a standard Java String.

To accompany the simple timer-based task, a callback handler is required
in order to process the generated result. This can take the form of a simple
deferrable object which implements the Deferrable interface as shown in List-
ing 5.5.

The onCallback callback handler implemented in Listing 5.5 simply prints
out the deferred result of the long running task and then stops the reactor
in order to terminate the test. The onErrback error handler is not used in
this context but must be provided in order to fully implement the Deferrable
interface. Note that Java generic type specifiers are used to parameterise the
input and output types of the callback functions. In this case the callbacks
expect an input parameter of type String and will generate an output which is
also of type String.

Given these implementations of the simple long running task and simple
deferrable callback handler, the long running task may be executed using just
the two lines of code shown in Listing 5.6. The full implementation is provided
in the deferred examples package as DeferredEventExamplel.

The first of the two lines creates the new long running task and starts it
running, accepting the deferred event object which is returned. The second of
the two lines attaches the simple callback handler to the deferred event object
so that the callback can be executed on completion of the long running task.
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Listing 5.5 Simple Deferrable Callback Handler

public class SimpleDeferrable implements Deferrable<String, String> {

// Callbacks report the returned result then shut down the reactor.
public String onCallback(Deferred<String> deferred, String data) {
System.out.println("Deferred result : " + data);
reactorCtrl.stop();
return null;

}

// Errbacks are ignored in this example.
public String onErrback(Deferred<String> deferred, Exception error) {
return null;
}
}

Listing 5.6 Executing the Simple Long Running Task

Deferred<String> deferred = new LongRunningTask() .runTask();
deferred.addDeferrable(new SimpleDeferrable(), true);

As part of attaching the callback handler, the terminal parameter is set to
true which indicates that no further callback handlers will be attached to the
deferred event object. The use of the terminal parameter will be explored in
more detail when callback chaining is introduced in Section 5.4.

5.3 Deferred Error Handling

The use of deferred event callbacks may be used to pass back the results of
long running tasks on successful completion. However, another mechanism is
required for dealing with error and exception conditions which may occur during
execution. This is provided through the use of errbacks, or errored callbacks.

In order to demonstrate the use of errbacks, the long running task example
given in Listing 5.4 may be extended as shown in Listing 5.7. This shows a
typical case where any exceptions generated during the long running task are
caught and passed back via the deferred event object’s errback method. As an
alternative to using try/catch, new exceptions may also be explicitly created
as the errback parameter.

Errors are processed by deferrable callback handler using the onErrback
method. In place of the generically typed data parameter which is passed on
callbacks, the onErrback method accepts a parameter of type Exception, which
is the exception object passed by the deferred errback call. An example of a
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Listing 5.7 Simple Long Running Task With Errbacks

public class LongRunningTask implements Timeable<Integer> {
private boolean generateError = false;
private Deferred<String> deferred = null;

// Method used to initiate the long running task.

public Deferred<String> runTask(boolean generateError) {
this.generateError = generateError;
this.deferred = reactor.newDeferred();
reactor.runTimerOneShot (this, 1000, null);
return deferred.makeRestricted();

}

// Timer event is used to trigger deferred callback.
public void onTick(Integer data) {
try {
if (generateError)
throw new Exception("Errback Parameter");
deferred.callback(new String("Callback Parameter"));
} catch (Exception exc) {
deferred.errback(exc) ;
}
}
}

simple deferrable callback handler with support for error processing is shown in
Listing 5.8. The full code for this example is included in the deferred examples
package as DeferredEventExample2.

5.4 Deferred Callback Chaining

What sets deferred event objects apart from conventional callback implemen-
tations is their ability to support callback chaining. It is possible to attach
multiple deferrable callback handlers to a single deferred event object such that
when a callback is made the chained callback handlers are each invoked in turn.
For the purposes of demonstrating this feature, the simple deferrable callback
handler of Listing 5.5 is extended as shown in Listing 5.9.

Of particular interest in this version of the deferrable callback handler is
that the onCallback method processes the input data and returns the modified
version. In this case, it is simply a case of wrapping the string parameter
with function-style parentheses. It is then possible to attach multiple deferrable
callback handlers to the deferred event object as shown in Listing 5.10.

The example shown in Listing 5.10 also illustrates the use of the terminal
parameter of the addDeferrable method. When adding the final deferrable in a
chain the terminal flag must be set to true. This terminates the callback chain,
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Listing 5.8 Simple Deferrable Callback Handler With Errback

public class SimpleDeferrable implements Deferrable<String, String> {

// Callbacks report the returned result then shut down the reactor.
public String onCallback(Deferred<String> deferred, String data) {
System.out.println("Deferred result : " + data);
reactorCtrl.stop();
return null;

}

// Errbacks are reported to the console in this example.
public String onErrback(Deferred<String> deferred, Exception error) {
System.out.println("Deferred error : " + error.toString());
return null;
}
}

Listing 5.9 Simple Chained Callback Handler

public class SimpleDeferrable implements Deferrable<String, String> {
String name;

// Constructor assigns name of deferrable.
public SimpleDeferrable(String name) {
this.name = name;

}

// Callbacks report the returned result and pass on processed data.
public String onCallback(Deferred<String> deferred, String data) {
System.out.println(name + " input = " + data);
return new String(name + " (" + data + ")");

}

// Errbacks are ignored in this example.
public String onErrback(Deferred(String> deferred, Exception error) {
return null;
}
}
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Listing 5.10 Creating Simple Deferrable Callback Chain

// Start up a long running task.
Deferred<String> deferred = new LongRunningTask().runTask();

// Attach callbacks to the long running task.

deferred.addDeferrable(new SimpleDeferrable("C1"), false);
deferred.addDeferrable(new SimpleDeferrable("C2"), false);
deferred.addDeferrable(new SimpleDeferrable("C3"), false);
deferred.addDeferrable(new SimpleDeferrable("C4"), true);

Listing 5.11 Output of Simple Deferrable Callback Chain

INFO : Started reactor.
Cl input = Callback Parameter

C2 input = C1 (Callback Parameter)

C3 input = C2 (C1 (Callback Parameter))

C4 input = C3 (C2 (C1 (Callback Parameter)))
INFO : Halting reactor.

INFO : Reactor stopped.

making it ready for execution. For this reason, the final deferrable object in a
callback chain is generally referred to as the terminal deferrable. Once a callback
chain has been terminated, any attempt to add further deferrable callback ob-
jects will generate a runtime exception of type DeferredTerminatedException.

The full implementation of the chained callback example is present in the
deferred examples package as DeferredChainExamplel. Running the example
code results in the console output shown in Listing 5.11. From this it is possible
to see that processing the callback chain using the deferred event object is
equivalent to making a set of nested function calls with the first callback method
acting as the ‘innermost’ function and the final callback method acting as the
‘outermost’ function.

5.5 Deferred Error Callback Chaining

The process of handling exception conditions within a callback chain is similar
to conventional callback chaining. Error conditions are passed up the call-
back chain by throwing exceptions from within the deferrable callback handler’s
onErrback method, as shown in Listing 5.12.

On calling the onErrback method on a given deferrable callback handler,
the deferred event object passes the exception condition which was thrown by
the previous stage in the callback chain. In the example implementation the
exception is simply re-thrown at each stage. Generally speaking, the error con-
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Listing 5.12 Simple Chained Errback Handler

public class SimpleDeferrable implements Deferrable<String, String> {
String name;

// Constructor assigns name of deferrable.
public SimpleDeferrable(String name) {
this.name = name;

}

// Callbacks are ignored in this example.
public String onCallback(Deferred<String> deferred, String data) {
return null;

}

// Errbacks are propagated in this example.
public String onErrback(Deferred<String> deferred, Exception error)
throws Exception {
System.out.println(name + " input = " + error);
throw (error);
}
}

Listing 5.13 Output of Simple Deferrable Errback Chain

INFO : Started reactor.

Cl input = java.lang.Exception: Errback Exception

C2 input java.lang.Exception: Errback Exception

C3 input = java.lang.Exception: Errback Exception

C4 input = java.lang.Exception: Errback Exception

WARNING : Unhandled exception in deferred closure.

THROWN : java.lang.Exception: Errback Exception
at com.zynaptic.reaction.examples.DeferredChainExample2...
at com.zynaptic.reaction.core.Reactor.processExpiredTimers...
at com.zynaptic.reaction.core.Reactor.run(Reactor.java:478)
at java.lang.Thread.run(Thread.java:636)

INFO : Halting reactor.

INFO : Reactor stopped.

dition should always be dealt with by the terminal deferrable, since unhandled
error conditions at this position in the callback chain will effectively be ‘lost’.
Listing 5.13 demonstrates the way in which such unhandled error conditions are
reported to the reactor log as warning messages. The full code for this example
is included in the deferred examples package as DeferredChainExample2.
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5.6 Mixing Callbacks and Errbacks

The preceding examples of callback chain operation dealt exclusively with either
callback or errback propagation. In practise it is possible that an onCallback
method within the callback chain may throw an Exception or an onErrback
method within the callback chain may successfully resolve an error condition,
allowing normal processing to resume.

The processing of return values and exception conditions for onCallback
and onErrback methods is actually identical. If an onCallback or onErrback
method returns normally, the next deferrable callback handler in the chain will
always have its onCallback method executed — passing in the data object re-
turned by the previous stage of the callback chain. Similarly, if an onCallback
or onErrback method throws an exception, this will be caught and passed to
the onErrback method of the next deferrable callback handler in the chain.

Listing 5.13 demonstrates the way in which error conditions which are not
dealt with by the terminal deferrable will appear in the reactor logs. In order
to prevent these warnings, neither the onCallback or onErrback method of a
terminal deferrable should throw an exception — these will usually return a null
object reference since no further processing is possible.

5.7 Callback Parameter Type Conversion

The deferrable callback examples previously presented all make the assumption
that while callbacks may modify the callback data, the callback parameter type
remains fixed. This has helped to simplify the initial examples, but it does
not reflect the more realistic situation where callback handlers will typically
transform callback parameters from one type to another.

Callback parameter type conversion is expressed in the deferrable interface
definition given in Listing 5.3 by the two Java generics <T> and <U>. The
generic type <T> identifies the type of the callback parameter which is passed
into the deferrable callback handler, while the generic type <U> identifies the
data type which is returned by the callback handler on completion. As an
example, Listing 5.14 shows a deferrable callback handler which converts an
input of type Integer to an output of type String.

The deferred event interface presented in Listing 5.2 is also parameterised
by the generic type <T>, which in this case specifies the data type which will be
output by the previous stage of the callback chain. Therefore when appending
deferrable callback objects to a deferred event object, the generic type <T> of
the deferrable callback input must match the generic type <T> specified for the
deferred event object. This means that in the case of the example shown in
Listing 5.14, the deferrable callback object may only be added to a deferred
event object whose complete type specification is Deferred<Integer>.

When a new deferrable callback is added to the callback chain of a deferred
event object, it modifies the generic type of the deferred event object to match
the output type of the deferrable callback. This is carried out automatically
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Listing 5.14 Deferrable Callback Handler With Type Conversion

public class TypeConversionDeferrable
implements Deferrable<Integer, String> {

// Callbacks convert the integer input to a string output.

public String onCallback(Deferred<Integer> deferred, Integer data) {
System.out.println("Integer parameter => " + data);
return new String("Value = " + data);

}

// Errbacks are unused in this example.
public String onErrback(Deferred<Integer> deferred, Exception error) {
return null;
}
}

Listing 5.15 Adding Deferrable Callbacks With Type Conversion

// Start up a long running task.
Deferred<Integer> deferredInteger = new LongRunningTask().runTask();

// Attach callback to convert from integer to string.
Deferred<String> deferredString = deferredInteger.addDeferrable
(new TypeConversionDeferrable(), false);

// Attach callback to report string result.
deferredString.addDeferrable (new TerminalDeferrable(), true);

by the addDeferrable method, which returns a new reference to the deferred
event object with suitable type casting applied.

Listing 5.15 shows the way in which type conversion may be applied to
a deferred event object. The initial reference to the deferred event object
(deferredInteger) is returned on starting a new long running task that will
pass up an integer result on completion. When the deferrable callback object
given in Listing 5.14 is added to the callback chain, a new reference to the de-
ferred event object (deferredString) is automatically created with the correct
type specification. This new reference may then be used to append another
deferrable callback object, which in this case will accept a Java string object as
its input. The full implementation of this example is present in the deferred
examples package as DeferredChainExample3.
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5.8 Restricting Deferred Capabilities

In order to make the use of deferred event object more secure, only the original
source of the deferred event object should normally be able to issue callbacks.
This may be enforced by calling the makeRestricted method on the deferred
event object, which returns a restricted capability reference. Any attempt to call
the callback or errback methods on a restricted capability reference will then
result in a RestrictedCapabilityException being thrown. This is demon-
strated by the simple long running task given in Listing 5.4.

Since the restricted and full capability deferred references are distinct ob-
jects, it is not safe to use the object identity test (==) to check equivalence
between them. However, the Object.equals and Object.hashCode methods
are fully implemented — so that different references to the same deferred event
objects are considered to be equivalent for all other comparison tests. Note
that the deferred event handle passed back to deferrable callback handlers as
the first parameter in the onCallback and onErrback methods will always be
a restricted capability reference.

5.9 Execution Context

The processing of deferrable callback chains is always carried out in the context
of the reactor thread. Callbacks will only be processed once a terminal de-
ferrable has been added to the callback chain and a call to either the callback
or the errback method is made. Note that a call to the callback or errback
method must be made exactly once per deferred event object, and any addi-
tional attempts to call these methods will result in a runtime exception of type
DeferredTriggeredException being thrown.

There is no restriction on the ordering of calls to the callback, errback and
addDeferrable methods — so deferrable callback handlers can actually be added
to the callback chain after a call to the callback or errback method has already
been made, provided the callback chain has not already been terminated. Calls
to the callback, errback and addDeferrable methods may be made from any
thread context since deferred event objects are thread safe.

5.10 Deferred Callback Timeouts

There are certain situations — particularly when performing external I/O — that
a long running task may fail to complete. When such a situation occurs, the
callback or errback methods on the associated deferred event object will never
be called and the callback chain would not then be executed.

To provide a clean way of dealing with long running tasks which fail to com-
plete it is possible to make use of deferred event timeouts. These are supported
by the setTimeout and cancelTimeout methods on the Deferred interface.
An example of setting a deferred callback timeout is shown in Listing 5.16. The
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Listing 5.16 Setting a Deferred Callback Timeout

// Attach a deferrable callback handler and set a timeout.
deferred.addDeferrable (new SimpleDeferrable(), true);
deferred.setTimeout (500) ;

full version of this example is included in the deferred examples package as
DeferredTimeoutExample.

In the event that the timeout expired before a call to the callback or
errback method is made, an exception of type DeferredTimedOutException
will be passed back via the onErrback method of the first deferrable callback
handler in the chain. The callback handlers may then process the timeout con-
dition as if it were a conventional error condition. A subtle consequence of
triggering a timeout condition in this manner is that a subsequent call to the
callback or errback methods will be silently discarded, since the callbacks
have already been triggered.

An alternative mechanism for setting timeouts on threadable tasks is de-
scribed in Section 6.6. In addition to the behaviour described here, the alterna-
tive method will also automatically cancel the underlying thread execution.

5.11 Waiting For Deferred Events

In certain circumstances it may be desirable to combine asynchronous calls and
more conventional blocking I/O calls within the same function. Typically, such
sections of code will be executed in the context of a threadable task as described
in Section 6.2. However, this type of interworking can also be achieved for
arbitrary threaded code provided that the blocking calls are not executed in the
context of the main reactor thread.

In order to achieve this, each deferred event object implements the defer
method on the Deferred interface. On calling this method, the callback chain
will be automatically terminated with a synchronizing callback handler and the
calling thread will be blocked until a deferred callback has been received. The
callback data is then passed back as the return value for the defer method
call as the calling thread is resumed. In the event that an errback condition
is received, the exception which was passed as the errback parameter will be
re-thrown in the context of the calling thread.

An example of mixing conventional blocking I/O calls with asynchronous
APIs is shown in Listing 5.17. In this example, raw data is being read in 16 byte
chunks from a standard Java input stream using blocking I/O. Within the loop,
an asynchronous API is being used to write out the data. The asynchronous API
call returns a deferred event object that on completion of the write operation
will pass back a status value as the callback parameter.
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Listing 5.17 Implementing a Blocking Wait For Deferred Callbacks

// Perform repeated blocking reads on an input stream.
byte[] byteBuffer = new byte[16];

int byteCount;

while ((byteCount = inputStream.read(byteBuffer)) >= 0) {

// Write out data using an asynchronous API.
Deferred<Status> deferred = asyncOut.write(byteBuffer, byteCount);

// Wait for asynchronous completion and check callback data.
try {
Status status = deferred.defer();
if (status != Status.0K) {
// Handle unexpected status.
}
}
catch (Exception error) {
// Handle errback exceptions.
}
}

In order to process the write status value within the loop, a call to the
defer method is made, which causes execution of the loop to block until the
status value has been returned from the asynchronous write operation. It is
also possible that an exception could be passed back via the deferred errback
handler, in which case it will be re-thrown and must be handled in the con-
ventional manner. Note that the defer method declaration specifies that any
exception derived from the base Exception class may be thrown, since exact
details of the errback conditions which may be generated will be specific to a
given asynchronous API call.

5.12 Pre-Triggered Deferred Factory Methods

In addition to the conventional newDeferred factory method for deferred event
objects, the reactor provides two methods for generating pre-triggered deferred
event objects. These are useful in situations where an asynchronous API call
can return an immediately available value as the callback parameter or an imme-
diately generated exception as the errback parameter. The callDeferred con-
venience method takes the data value which is to be passed as the callback pa-
rameter and creates a new deferred event object where the onCallback method
has already been invoked using that data value. Similarly, the failDeferred
convenience method takes the exception object which is to be passed as the er-
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Listing 5.18 Using Pre-Triggered Deferred Event Objects

public Deferred<String> getName() {
if (cachedName != null) {
return reactor.callDeferred(cachedName) ;

}
else if (cachedError '= null) {
return reactor.failDeferred(cachedError);
¥
else {

return asyncGetName () .addDeferrable(cacheUpdateHandler) ;
}
}

rback parameter and creates a new deferred event object where the onErrback
method has already been invoked.

An example of using pre-triggered deferred event objects is shown in List-
ing 5.18. In this case, the desired return value may already have been accessed
and locally cached. If present, the cached value can be returned immediately
using the callDeferred method. Alternatively, a cached error condition can
be returned immediately using the failDeferred method. If no cached value
is present, a conventional asynchronous call can be made, which as well as re-
turning the data value to the caller can also be configured to update the cached
values when the callback chain is executed.

5.13 Discarding Deferred Event Objects

A potential issue arises where deferred event objects are returned from method
calls that are part of a higher level API. There may be situations where the
caller just wants to initiate a transaction and is not concerned with processing
the returned callbacks. If the returned deferred event object is allowed to go
out of scope without being correctly terminated, a warning will be appended to
the reactor logs on object finalisation.

To prevent the generation of these warning messages in the reactor logs, the
deferred event object may be explicitly discarded by calling the discard method
on the Deferred interface. This has the effect of terminating the callback chain
with an implicit ‘empty’ terminal deferrable.

5.14 Fluent-Style Deferred Programming

The API for deferred event objects as shown in Listing 5.2 also provides support
for fluent-style programming. Since most of the API calls return an appropri-
ately typed reference to the deferred event object itself, it is possible to chain
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Listing 5.19 Building a Fluent-Style Deferred Callback Chain

// Using fluent-style programming to build a callback chain.
terminatedDeferred = reactor.newDeferred()
.addDeferrable(deferrableA)
.addDeferrable(deferrableB)
.addDeferrable(deferrableC)
.setTimeout (500)
.terminate();

together multiple method calls within a single statement. An example of this
approach is shown in Listing 5.19.

In order to make code written in this manner more elegant, a reduced-form
version of the addDeferrable method is provided which omits the terminal
parameter. All deferrable callbacks which are added via this method will then
be appended to the callback chain without terminating it. The additional
terminate method is provided for explicitly terminating callback chains which
have been assembled in this manner

Since the setTimeout, cancelTimeout and makeRestricted API calls re-
turn an appropriately typed reference to the deferred event object, these may
also be used in a fluent-style manner. As well as building the callback chain, the
supplied example shows the additional assignment of a 500 millisecond timeout.
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Chapter 6

Running Threadable Tasks

One of the main goals of the Reaction framework is to provide an easy way to
manage long running tasks within an event driven framework. This allows the
clean integration of activities which would normally block the flow of execution —
such as synchronous RPC calls or long-running processing loops. It also provides
an easy and intuitive way of managing concurrent execution. Central to these
goals is the implementation of threadable task objects, which will be described
in detail in this chapter.

6.1 The Threadable Task API

The methods used for managing threadable tasks are provided by the standard
reactor interface (Reactor), as defined in the Reaction APT package. The full
set of methods used for threadable task management are shown in Listing 6.1.

The reactor interface methods provide support for running a threadable
task in a new thread (runThread) and for cancelling a threadable task which is
already running (cancelThread). In each case a single threadable task object
is passed as the primary parameter, while the runThread method also passes in
a generically typed input data parameter. Threadable task objects are defined
as those which implement the Threadable interface as shown in Listing 6.2.

The only method required by the Threadable interface is the run method.
This takes a data object of generic type <T> as its parameter, which will be the
same data object originally passed to the reactor’s runThread method. The run
method must eventually return a data object of generic type <U> or throw an
exception, but there is no limitation on the amount of time which it may take
to run.

6.2 Running a Simple Threadable Task

Implementing a long running threadable task is just an exercise in implement-
ing the run method of the Threadable interface. Unlike code which runs in

%)
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Listing 6.1 Reactor Thread Control Interface

package com.zynaptic.reaction;
public interface Reactor {

public <T, U> Deferred<U> runThread
(Threadable<T, U> threadable, T data)
throws ReactorNotRunningException, ThreadableRunningException;
public <T, U> Deferred<U> runThread
(Threadable<T, U> threadable, T data, int msTimeout)
throws ReactorNotRunningException, ThreadableRunningException;
public void cancelThread(Threadable<?, 7> threadable);

Listing 6.2 The Threadable Interface Definition

package com.zynaptic.reaction;

public interface Threadable<T, U> {
public U run(T data) throws Exception;

}

the context of the main reactor thread — such as timer, signal and deferrable
callbacks — threadable tasks are allowed to block. In the example shown in
Listing 6.3 there is a blocking call to the Thread.sleep method which halts the
execution of the threadable task for 1 second.

Assuming that the long running task is not interrupted while sleeping, it will
return a generically typed data object as specified by the interface definition for
the run method. In order to run the threadable task, the runThread method
on the Reactor interface is invoked as shown in Listing 6.4.

The runThread method returns a deferred event object which will have its
callbacks executed when the threadable task’s run method returns. The callback
parameter passed up the callback chain will be the generically typed data object
which is returned by the threadable task’s run method. In order to process
the callbacks, the simple deferrable callback handler previously presented in
Section 5.2 may be used. The full implementation of this example may be
found in the thread examples package as ThreadableExamplel.

6.3 Exception Handling in Threadable Tasks

One advantage of using threadable tasks is that unlike ‘raw’ threads there is a
well defined way of handling exceptions which occur during execution. These
are automatically caught by the Reaction framework and converted to deferred
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Listing 6.3 A Simple Threadable Long Running Task

public class LongRunningTask implements Threadable<String, String> {
public String run(String data) throws InterruptedException {
System.out.println("Threadable input : " + data);
Thread.sleep(1000);
return new String("Threadable Result");
}
¥

Listing 6.4 Running a Threadable Long Running Task

Deferred<String> deferred = reactor.runThread
(new LongRunningTask(), new String("Input Data"));
deferred.addDeferrable(new SimpleDeferrable(), true);

errback calls. The error condition may then be handled in the same manner
as conventional deferred errbacks. An example of a long running task which
generates an exception is shown in Listing 6.5.

In this example an exception is explicitly thrown by the threadable run
method, and the generated exception object will be passed back via the deferred
errback chain. The full implementation of this example is provided in the thread
examples package as ThreadableExample2. This includes a deferrable callback
handler which prints out the details of the generated exception, as shown in
Listing 6.6.

It is worth noting from the debug log messages that additional worker threads
are automatically created and destroyed in order to execute the threadable
task code. These are standard Java threads which are managed within the
reactor core as a dynamic thread pool. By reusing threads from the thread
pool, the overhead of creating and destroying thread objects for each execution
of a threadable task is much reduced.

6.4 Stateful Threadable Task Objects

A useful feature of threadable task objects is that it is possible to create stateful
threadable tasks which may be submitted for execution multiple times. The
one constraint is that a given threadable task cannot be resubmitted if the
task is already running. Any attempt to resubmit a threadable task that is
already running will cause the reactor’s runThread method to throw a runtime
exception of type ThreadableRunningException. An example implementation
of a stateful threadable task is shown in Listing 6.7.

In the example the task state is represented by the count member variable.
This will be incremented each time the threadable task is submitted for exe-
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Listing 6.5 Throwing Exception From a Threadable Long Running Task

public class LongRunningTask implements Threadable<String, String> {
public String run(String data) throws InterruptedException {
System.out.println("Threadable input : " + data);
Thread.sleep(1000);
throw new InterruptedException("Task failed");
}
Y

Listing 6.6 Console Output of Threadable Exception Handling

INFO : Started reactor.

DEBUG : Started Thread[Workerl,5,Reaction]

Threadable input : Input Data

Deferred error : java.lang.InterruptedException: Task failed
INFO : Halting reactor.

DEBUG : Killing Thread[Worker1,5,Reaction]

INFO : Reactor stopped.

cution, until an exception is thrown on the fifth execution of the run method.
The corresponding deferrable callback handler used in the example is shown in
Listing 6.8. The onCallback method automatically resubmits the threadable
task object for execution and the onErrback method terminates the test on
completion. The full implementation of this example is included in the thread
examples package as ThreadableResubmitExample.

6.5 Cancelling a Running Threadable Task

The process of cancelling a running threadable task makes use of the un-
derlying Java threads API for interrupting blocked threads. When the reac-
tor’s cancelThread method is called for a given threadable task object, the
standard interrupt method is called on the underlying Java thread. This
means that the blocked thread will be interrupted, throwing an exception of
type InterruptedException. This exception will then be passed back via the
threadable’s deferred errback chain using the standard deferred error handling
model.

The cancellation of threadable tasks may be demonstrated by making a small
modification to the simple threadable test example previously used. The mod-
ified thread startup and cancellation code is shown in Listing 6.9. This results
in the console output given in Listing 6.10, which clearly demonstrates the gen-
eration of the InterruptedException errback. The full version of this example
is included in the thread examples package as ThreadableCancelExample.
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Listing 6.7 A Stateful Threadable Long Running Task

public class LongRunningTask implements Threadable<String, String> {
private int count = 0;

public String run(String data) throws InterruptedException {

System.out.println("Threadable input : " + data);
Thread.sleep(1000);
if (++count == 5)
throw new InterruptedException("Test over");
return new String(data + " " + count);
}
}

Listing 6.8 Resubmitting Threadable From a Deferrable Callback

public class SimpleDeferrable implements Deferrable<String, String> {

// Callbacks resubmit the threadable.

public String onCallback(Deferred<String> deferred, String data) {
reactor.runThread(longRunningTask, data).addDeferrable(this, true);
return null;

}

// Errbacks are used to stop the reactor.
public String onErrback(Deferred<String> deferred, Exception error) {
System.out.println("Deferred error : " + error);
reactorCtrl.stop();
return null;
}
}

Listing 6.9 Cancellation of Threadable Long Running Task

// Start up a long running task.
Threadable<String, String> longRunningTask = new LongRunningTask();
Deferred<String> deferred = reactor.runThread

(longRunningTask, new String("Input Data"));

// Attach callbacks to the long running task.
deferred.addDeferrable(new SimpleDeferrable(), true);

// Cancel the task part way through.
Thread.sleep(500);
reactor.cancelThread(longRunningTask) ;
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Listing 6.10 Console Output of Threadable Cancellation

INFO : Started reactor.

DEBUG : Started Thread[Worker1l,5,Reaction]

Threadable input : Input Data

DEBUG : Cancelling Thread[Worker1,5,Reaction]

Deferred error : java.lang.InterruptedException: sleep interrupted
INFO : Halting reactor.

DEBUG : Killing Thread[Worker1,5,Reaction]

INFO : Reactor stopped.

6.6 Threadable Task Timeouts

The type of behaviour demonstrated by the example given in Listing 6.9 can be
useful for managing threadable tasks which may block during execution. This
essentially provides a timeout on the threadable execution - cancelling it if an
underlying call blocks for an unexpectedly long time.

Support for implementing this type of timeout behaviour is included in the
API via an alternate form of the runThreadable method which includes an
extra timeout parameter. This method variant will execute the threadable task
as previously described, but it also sets a timeout on the deferred callback
which will automatically cancel the thread when the execution time exceeds the
specified timeout period.

The initial timeout period must be specified when making the initial call to
the runThreadable method. However, the timeout behaviour may subsequently
be modified by calling the setTimeout and cancelTimeout methods on the
returned deferred event object, as previously described in Section 5.10.

6.7 Execution Context

Threadable tasks may be scheduled for execution using the reactor’s runThread
method from any thread context. Similarly, the reactor’s cancelThread method
may be used to cancel a running threadable task from any context. All deferred
callback processing associated with the completion of a threadable task is carried
out within the context of the main reactor thread.

Threadable tasks run within independent worker threads, so the usual syn-
chronisation issues associated with sharing data between threads still need to be
considered. Thread synchronisation can be much simplified by using immutable
objects for the threadable input data and return value. An alternative model is
to effectively transfer ownership of the threadable input data to the threadable
object by discarding references to it in the initiating thread after it has been
passed as the data parameter to the runThread method.

Fach time a threadable task is scheduled for execution by calling the reactor’s
runThread method it will be arbitrarily assigned to an existing Java thread
from the reactor’s thread pool. If a stateful threadable task is resubmitted for



6.8. THREAD PRIORITISATION LEVELS 61

execution, there is no guarantee that successive runs will use the same underlying
Java thread object. This means that threadable tasks must not attempt to
directly manipulate the underlying Java thread state.

6.8 Thread Prioritisation Levels

The Reaction framework is designed so that the main reactor thread pro-
vides low latency processing of the various different event types. For this
reason the main thread is set up using the maximum thread priority level
(Thread .MAX_PRIORITY). The worker threads which are responsible for execut-
ing threadable objects should run at a lower priority so that they do not interfere
with the low latency operation of the main thread. For this reason, the worker
threads are assigned the normal thread priority level (Thread.NORM_PRIORITY).

Thread prioritisation works correctly on most JVM implementations, but
unfortunately there are some JVM’s in common use which do not respect the
thread priority settings. This is a particular problem when using Java under
Linux. Generally speaking, JVM’s which do not support thread prioritisation
will still use some form of timeslicing scheduler which obviates the need to
explicitly yield from executing threadable tasks. However, the timeliness of
reactor event processing will degrade as the number of computationally intensive
threads increases.

As a general rule, applications which only make use of threadable objects to
manage blocking I/0 will work correctly regardless of thread priority support.
Applications which also make use of threadable objects for running computa-
tionally intensive tasks should be restricted to platforms which correctly imple-
ment the prioritised threading model in order to guarantee timely handling of
reactor events.
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Chapter 7

Advanced Deferred Events

The standard deferred event model provides a useful mechanism for propagat-
ing a single deferred event to multiple deferrable objects within a single callback
chain. This chapter introduces two additional components which support more
complex callback management. These provide additional functionality by al-
lowing multiple callback chains to be merged into a single callback chain and a
single callback chain to be split into multiple parallel callback chains.

7.1 Advanced Deferred Event API

Advanced deferred callback management is provided through the use of de-
ferred event concentrators and deferred event splitters. These implement the
DeferredConcentrator and DeferredSplitter interfaces respectively. The
reactor core acts as a factory for components implementing these interfaces
and the standard reactor interface provides the factory functions shown in List-
ing 7.1.

The newDeferredConcentrator factory method will return an object which
implements the DeferredConcentrator interface as shown in Listing 7.2. Sim-
ilarly, the newDeferredSplitter factory method will return an object which
implements the DeferredSplitter interface as shown in Listing 7.3.

In the case of both the concentrator and splitter interfaces there is an
addInputDeferred method for attaching deferred event inputs as well as a
getOutputDeferred method for obtaining a handle on an output deferred event
object. However, there are obvious functional differences between the implemen-
tation of these calls for concentrator and splitter components.

7.2 Using Deferred Event Concentrators

The deferred event concentrator is used to collect the results of multiple deferred
event callbacks and forward them to a single deferred event callback chain. A
typical example of setting up a deferred event concentrator to do this is shown in
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Listing 7.1 Reactor Advanced Deferred Event API Factory Methods

package com.zynaptic.reaction;
public interface Reactor {

public <T> DeferredConcentrator<T> newDeferredConcentrator();
public <T> DeferredSplitter<T> newDeferredSplitter();

Listing 7.2 Interface Definition for Deferred Event Concentrator

package com.zynaptic.reaction;

public interface DeferredConcentrator<T> {
public void addInputDeferred(Deferred<T> deferred)
throws DeferredTerminationException;
public Deferred<List<T>> getOutputDeferred();
X

Listing 7.4. The full implementation of this example is present in the deferred
examples package as DeferredConcentratorExample.

In the example, a deferred event concentrator is created using the reactor’s
factory method. A number of threadables are then created which are used
to execute long running tasks — in the case of the example these are prime
factorisations of arbitrary integer values. The deferred event objects returned
on starting the threadable tasks are then added as inputs to the deferred event
concentrator, which automatically terminates their callback chains.

The final stage is to attach the callback handlers to the output of the deferred
event concentrator. A handle on the output deferred event object is obtained
by calling the getOutputDeferred method on the deferred event concentrator.
When this method is first called on a given concentrator object, the concentrator
is ‘locked’ so that further inputs cannot be added. Once locked, any attempts to
call addInputDeferred on the concentrator object will result in an exception of
type DeferredTerminationException. Callback handlers can be attached to
the output deferred event object in the normal fashion, with the output callback
chain being ready for triggering once it has been correctly terminated.

In the event that all input deferred events complete successfully (ie, issue
callbacks rather than errbacks), the callback parameter data for each deferred
event is added to an ordered list. Once all deferred event inputs have issued
their callbacks, this ordered list is then passed as the parameter to the output
callback chain. In the example, this list contains string representations of the
calculated prime factors. Listing 7.5 shows a callback handler which may be
used to print out these results to the console.
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Listing 7.3 Interface Definition for Deferred Event Splitter

package com.zynaptic.reaction;

public interface DeferredSplitter<T> {
public void addInputDeferred(Deferred<T> deferred)
throws DeferredTerminationException;
public Deferred<T> getOutputDeferred() ;
}

Listing 7.4 Example of Using a Deferred Event Concentrator

// Create a deferred concentrator object to collect all the results.
DeferredConcentrator<String> resultsConcentrator =
reactor.newDeferredConcentrator();

// Initiate the long running tasks and attach the deferred results
// to the deferred result concentrator.
for (int i = 0; i < nums.length; i++) {
Deferred<String> deferredResult = reactor.runThread
(new PrimeFactorCalculator(), new Integer(nums[i]));
resultsConcentrator.addInputDeferred(deferredResult);

}

// Once all deferred results have been added to the concentrator,
// attach the deferred output handler.
resultsConcentrator.getOutputDeferred() .addDeferrable

(new ResultsProcessor(), true);

Listing 7.5 Example of Callback Handling for Deferred Event Concentrator

public String onCallback

(Deferred<List<String>> deferred, List<String> data) {
System.out.println("Prime factorisation results :");
Iterator<String> listIter = data.iterator();
for (int i = 0; i < data.size(); i++) {

System.out.println(" " + nums[i] + " => " + listIter.next());
}
reactorCtrl.stop();
return null;
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A significant feature of the results list passed by the concentrator’s output
callback is that its ordering is consistent with the order in which input deferred
events were added to the concentrator. This means that the result passed back
by the first deferred input event to be added to the concentrator will be placed
at the start of the list, with the results from other deferred input events being
added in order. In the example, this means that the printed result can combine
ordered data associated with the input deferred events (the nums array) with
the ordered data placed in the results list by the concentrator (the data list).

When one of the deferred event inputs to a concentrator object generates
an errback condition, this will be immediately propagated to the concentrator’s
output. Since the output deferred event object can only handle a single errback
condition, only the first errback to occur will be propagated in this manner.
All successful callback inputs and subsequent errback inputs will be silently
discarded.

7.3 Using Deferred Event Splitters

The deferred event splitter is used to ‘fork’ a single callback chain so that call-
backs may be processed in parallel by multiple output callback chains. This is
typically used when there are multiple client components which need to wait on
the same underlying transaction. An example of this is shown in Listing 7.6.
The full version of this example is present in the deferred examples package
as DeferredSplitterExample.

In this example a deferred event splitter object is created using the reactor’s
factory method. A number of deferrable callback handlers are then created,
which are attached to the outputs of the deferred event splitter. Output de-
ferred event objects are created dynamically on calling the getOutputDeferred
method, so an arbitrary number of output callback chains can be attached.

The example then initiates a long running task and attaches the result-
ing deferred event object to the input of the deferred event splitter using the
addInputDeferred method. Finally, more output handlers can be attached if
required. The deferred splitter component differs from the deferred concentra-
tor in that the only constraint is that the addInputDeferred method must be
called exactly once. Extra output callback chains can be attached even after
the input callback chain has triggered, since the output of the input callback
chain is cached for the lifetime of the deferred splitter object.

It is important to note that when the callback on the input deferred event
object is triggered, the data parameter which is passed by that callback will
be passed in turn to each of the registered output callback chains. Therefore
callback handlers attached to the outputs of a deferred splitter object must not
make any changes to the parameter data object which is passed to them. In
order to ensure that this is the case, it is recommended that all parameter data
objects passed to the input of a deferred event splitter are made immutable.

The handling of errback conditions by the deferred event splitter is essentially
the same as for callback handling. The exception object which is passed as the
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Listing 7.6 Example of Using a Deferred Event Splitter

// Create a deferred splitter object to fork the results.
DeferredSplitter<String> resultsSplitter =
reactor.newDeferredSplitter();

// Attach some callback handlers to the deferred splitter outputs.
for (int i = 0; i < CALLBACK_MAX / 2; i++) {
resultsSplitter.getOutputDeferred() .addDeferrable
(new ResultsProcessor(i), true);

// Initiate a long running task and attach it to the deferred
// splitter input.
int num = 1 + new Random() .nextInt(100000000) ;
Deferred<String> deferredResult = reactor.runThread

(new PrimeFactorCalculator(), new Integer(num));
resultsSplitter.addInputDeferred(deferredResult);

// Attach some more callback handlers if required.
for (int i = CALLBACK_MAX / 2; i < CALLBACK_MAX; i++) {
resultsSplitter.getOutputDeferred() .addDeferrable
(new ResultsProcessor(i), true);

input errback parameter will be forwarded in turn to each of the registered
output errback chains. Again, output errback handlers should not modify the
underlying exception object during processing.
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Chapter 8

The Reaction OSG1i Service

The Reaction framework has been designed in such a way that it may be used as
the basis for conventional Java applications or as an independent OSGi service.
The dynamic nature of the Reaction framework makes it a good candidate for
use within OSGi based systems and this chapter will examine how the Reaction
service may be integrated into the OSGi platform.

8.1 Creating the Reaction OSGi Bundle

The Reaction OSGi bundle consists of the API package, the core implementation
package, the OSGi wrapper package and the utilities package. OSGi bundle
creation may be carried out using the bnd bundle creation tool originally written
by Peter Kriens [1] using the configuration shown in Listing 8.1. The full version
of this configuration file may be found in the root directory of the source code
distribution as Reaction.bnd.

The bundle configuration specifies that the only exported package is the
API package (com.zynaptic.reaction). This provides the only mechanism for
accessing the functionality of the Reaction framework from other OSGi bundles.
The reactor lifecycle management is now carried out automatically by the bundle
activator, which starts the reactor when the bundle is started and shuts it down
when the bundle is stopped.

The standard OSGi configuration makes use of the default bundle activator.
This uses hardcoded implementations of the monotonic clock source and logging
target as described below.

e The monotonic clock source used by the default activator is the fixed-
up wall clock described in Section 2.1.1. This is the ‘lowest common
denominator’ monotonic clock source which will work on all supported
platforms.

e The standard log target is the optional OSGi log service wrapper described
in Section 2.2.3. It will be used if the standard OSGi logging service is
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Listing 8.1 Basic OSGi Bundle Metadata

Bundle-Name : Zynaptic Reaction
Bundle-SymbolicName : com.zynaptic.reaction
Bundle-Version : 0.6

Bundle-Description : Zynaptic Reaction framework.

Private-Package : \
com.zynaptic.reaction.core, \
com.zynaptic.reaction.osgi, \
com.zynaptic.reaction.util

Import-Package : \

org.osgi.framework; version="[1.6,2.0)", \

org.osgi.util.tracker; version="[1.5,2.00", \
org.osgi.service.log; version="[1.3,2.0)"; resolution:="optional"

Export-Package : \
com.zynaptic.reaction

Bundle-Activator : \
com.zynaptic.reaction.osgi.ReactionDefaultActivator

active when the Reaction bundle is resolved.

e The backup log target redirects log messages to the standard console out-
put, as described in Section 2.2.1. It will be used if the standard OSGi
logging service is not available when the Reaction bundle is resolved.

The default bundle activator is applicable to all platforms supported by the
OSGi framework and will be a good choice for most applications. However,
there are situations where a different choice of monotonic clock source or log-
ging target would be applicable. Creating a modified version of the bundle
activator which supports a different combination of monotonic clock source and
logging target is simply a matter of changing the MonotonicClockSource and
ReactorLogTarget implementation classes. It is good practise to create a new
activator class when making such changes, which will result in a corresponding
change to the Bundle-Activator descriptor in the bundle metadata.

8.2 Activating the Reaction OSGi Service

Within any given OSGi based application, the Reaction service should generally
be treated as an infrastructure component. This means that it should be started
prior to application startup and remain active throughout a given application
session. This assumption makes application development much more straight-
forward, since the application components can then assume that the Reaction
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service is always available in normal operation. Application components will
still need to track the Reaction service, but loss of the Reaction service can
then be treated as a fatal error and application recovery is not required.

The standard way of enforcing this activation order is to make use of the
OSGi framework’s start level service, or the new start level API. Typically, the
OSGi framework startup process should ensure that the following activation
order is observed:

1. The standard OSGi framework service will always be started first.

2. The standard OSGi log service should be started to provide the basic
logging functionality.

3. Any required backend logging services should be started and attached to
the OSGi log service.

4. The Reaction service should be started and will automatically attach to
the existing OSGi log service.

5. The core application components may be started.

6. Additional application plugins can be installed, started, stopped and unin-
stalled as required.

8.3 Accessing the Reaction OSGi Service

Once activated, the Reaction OSGi service can be used by any number of client
OSGi bundles to provide full asynchronous programming support. However,
there are various lifecycle considerations which must be taken into account when
designing a client OSGi bundle. There are three lifecycle events which the client
must observe which can be summarised by the methods provided by the example
LifecycleHandler class shown in Listing 8.2.

The first lifecycle event is client startup. This should only occur once the
OSGi client bundle has been started and it has been successfully bound to the
Reaction service. In the example, the client startup method is used to start a
repeating timer which will print a ‘liveness’ message to the console every second.

The second lifecycle event is client teardown. This occurs when the client
bundle is stopped and the Reaction service is still running. Teardown implies
a clean shutdown of the client, with the client cancelling all outstanding trans-
actions with the Reaction service. In the case of the example, this involves
cancelling the repeating timer which was set up during startup.

The third potential lifecycle event is client abort. This occurs when the
client bundle is still running, but the Reaction service is shut down. In normal
operation this should not occur, but clients should make every attempt to clean
up on receiving an abort condition. Note that when a client is aborted it is no
longer able to access the Reaction service, so cleaning up is restricted to tidying
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Listing 8.2 Example of a Reaction Client Lifecycle Handler

public class LifecycleHandler {
private Reactor reactor = null;
private LivenessIndicator liveness = null;

public void startup(Reactor reactor) {
System.out.println("Running client startup handler.");
liveness = new LivenessIndicator();
reactor.runTimerRepeating(liveness, 1000, 1000, null);
this.reactor = reactor;

}

public void teardown() {
System.out.println("Performing orderly client shutdown.
reactor.cancelTimer (liveness);

}

")

public void abort() {
System.out.println("Aborting client on loss of reactor.");

}

private class LivenessIndicator implements Timeable<Integer> {
private int callbackCount = 0;
public void onTick(Integer data) {
System.out.println
("Reaction client is alive (" + (callbackCount++) + ")");

up independent resources. This will typically include such things as closing open
files, killing local threads and closing GUI windows.

The lifecycle event handler shown in Listing 8.2 needs to be wrapped in the
standard OSGi activation API in order to integrate as an OSGi client of the
Reaction service. An example of such a wrapper is shown in Listing 8.3 which
implements the standard OSGi activator and service tracker interfaces. Note
that the OSGi specification makes no guarantees about the thread context to be
used when issuing bundle activator and service tracker callbacks, so all method
calls have been made synchronised.

A full implementation of this OSGi Reaction client example is provided
in the osgi examples package. A corresponding bundle definition file is also
included in the root directory (as OsgiStartupExample.bnd) which may be
used in conjunction with the bnd bundle creation tool.
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Listing 8.3 Example of a Reaction Client Activator

public class OsgiStartupExample implements BundleActivator,
ServiceTrackerCustomizer<Reactor, Reactor> {

private BundleContext context;
private ServiceTracker<Reactor, Reactor> tracker;
private LifecycleHandler lifecycleHandler;

public synchronized void start
(BundleContext context) {...}

public synchronized Reactor addingService
(ServiceReference<Reactor> ref) {...}

public synchronized void stop
(BundleContext context) {...}

public synchronized void removedService
(ServiceReference<Reactor> ref, Reactor service) {...}

public synchronized void modifiedService
(ServiceReference<Reactor> ref, Reactor service) {...}

Listing 8.4 Reaction Client Activator Start Method

public synchronized void start(BundleContext context) {
System.out.println("Starting up Reaction client bundle.");
this.context = context;

// Starting up the reactor service.

tracker = new ServiceTracker<Reactor, Reactor>
(context, Reactor.class.getName(), this);

tracker.open() ;

8.3.1 Starting a Reaction Service Client

As defined by the standard OSGi lifecycle, the first method to be called on
starting a bundle is the bundle activator’s start method. The implementation
used by the example client activator is shown in Listing 8.4. In this case a
new OSGi service tracker is created for the Reaction service, with the lifecycle
wrapper being set up to receive notifications of status changes to the Reaction
service. At this stage it is not known if the Reaction service is available, so it
is not possible to call the lifecycle startup method.

Once the client bundle has been started, the OSGi framework will attempt to
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Listing 8.5 Reaction Service Added Method

public synchronized Reactor addingService
(ServiceReference<Reactor> ref) {
Reactor reactor = null;

// Multiple reactor services are not expected.
if (lifecycleHandler == null) {
reactor = context.getService(ref);
lifecycleHandler = new LifecycleHandler();
System.out.println("Found reactor.");

// Run the client lifecycle startup.
lifecycleHandler.startup(reactor);

}

// Return the reactor as the active service object.
return reactor;

bind the client to a running instantiation of the Reaction service. If successful,
this is notified using the service tracker’s addingService callback method. The
example used by the example lifecycle wrapper is shown in Listing 8.5. If a
lifecycle handler is not already running, this method will create one and then
invoke its startup method. By calling the startup method, the wrapper is
indicating to the lifecycle handler than the client bundle has been correctly
started and bound to a running Reaction service.

8.3.2 Clean Shutdown of a Reaction Client

When a Reaction client is being shut down, the OSGi framework will call the
bundle activator’s stop method while the client is still bound to the Reaction
service. This allows the client bundle to perform a clean shutdown — cancelling
any outstanding transactions with the Reaction service. The way in which this
is handled in the example lifecycle wrapper code is illustrated in Listing 8.6.

The final action of the activator’s stop method is to close the Reaction ser-
vice tracker. This will then cause the framework to issue a callback to the service
tracker’s removedService method, as shown in Listing 8.7. Since the lifecycle
handler has already undergone a clean shutdown at this stage, no further action
is usually required.

8.3.3 Abortive Shutdown of a Reaction Client

As previously discussed, an abortive shutdown occurs when the Reaction service
is removed while the Reaction client is still running. This causes the OSGi
framework to issue a removedService callback as shown in Listing 8.7 without
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Listing 8.6 Reaction Client Activator Stop Method

public synchronized void stop(BundleContext context) {
System.out.println("Halting Reaction client bundle.");

// Orderly shutdown of the client before removing reactor access.
if (lifecycleHandler != null) {
lifecycleHandler.teardown() ;
lifecycleHandler = null;
X
tracker.close();

}

Listing 8.7 Reaction Service Removed Method

public synchronized void removedService
(ServiceReference<Reactor> ref, Reactor service) {
System.out.println("Lost reactor.");

// Abort the client service if it is still running.
if (lifecycleHandler != null) {
lifecycleHandler.abort();
lifecycleHandler = null;
}
}

previously having called the activator’s stop method. The consequence of this
is that an abortive shutdown will be detected, causing the lifecycle handler’s
abort method to be executed.
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Chapter 9

User Interface Design

One of the interesting aspects of the Reaction framework is that it provides
event loop functionality which is completely independent of any standard GUI
based event infrastructure. Part of the rationale for this is that the Reaction
framework is designed to work on a wide range of target platforms — including
the headless CDC Foundation profile. Another perspective is that by making
this separation, use of the Model- View-Controller design pattern [4] is no longer
a matter of the application designer’s discretion; it becomes an essential part of
the application framework.

9.1 The Model-View-Controller Pattern

The Model-View-Controller (MVC) is one of the most widely known design
patterns in current use. It is based on the separation of responsibilities between
the core application logic (the model), the presentation layer (the view) and
user interaction handling (the controller). The Reaction framework is intended
for use when implementing the model portion of the MVC triumvirate. Dealing
with presentation and control is left to an appropriate user interface framework.

Use of the MVC pattern is particularly powerful when combined with OSGi
support, since the OSGi framework allows the Reaction based model to be
implemented as an independent OSGi component. GUl-specific viewer and
controller components can then be attached at runtime using the OSGi service
model. This means that the same application model component can be deployed
across multiple platforms with different UI frameworks, such as Swing, JavaFX,
SWT, Android or a GWT server.

9.2 Model Implementation Using Reaction
The concurrency model used when implementing the application model within

the Reaction framework is well defined. All callback execution is carried out
within the context of the main reactor thread, with long running tasks being

7
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Listing 9.1 Control Interface For Simple Stopwatch Example

public interface ApplicationControl {
public void timerStart();
public void timerStop();
public void timerReset();
public void timerQuit();

farmed out to a worker thread pool and completing via the standard callback
mechanism. This essentially eliminates the need for synchronisation, since all
object state updates which rely on callbacks will execute atomically within the
main reactor thread.

Although the core application code can take advantage of this clean con-
currency model, complications are introduced the Reaction framework is used
in conjunction with an independent GUI event loop. In order to address these
problems, there are some common techniques which are useful when implement-
ing the model’s interface to the view and controller components.

9.2.1 Adding The Controller Interface

One of the main complicating factors when implementing the control interface
on the model is synchronisation between the user interface and the model state.
Since the controller part of the user interface will typically be running in an
independent thread there is ample scope for introducing race conditions and
potential deadlocks. In order to mitigate these problems it is advisable that the
control interface on the model adopts the following rules:

e Always carry out model state changes within the context of the reactor
thread.

e Assume controller actions can occur in the context of any thread.

It is relatively easy to achieve these objectives by making use of the Reaction
framework’s signal event functionality. A key property of signal events are that
they can be triggered from any thread context and will then issue signal callbacks
within the context of the main reactor thread. By way of example, consider a
simple ‘stopwatch’ example that provides a control interface with timer start,
stop, reset and quit options. The Java interface definition for such a control
interface would look like the example shown in Listing 9.1.

In order to make the control interface safe to call from any thread context,
some mechanism of handing the API call from the GUI thread to the reactor’s
main thread is required. To achieve this each API call can be mapped to a
signal event, with the application logic being implemented in the signal event
handlers. The use of Java generics allows the signal event data parameter to
be strongly typed, and this will usually map to an immutable data type which
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Listing 9.2 Example of Control Interface Command Identifiers

enum CommandIds {
TIMER_START,
TIMER_STOP,
TIMER_RESET,
TIMER_QUIT

Listing 9.3 Mapping Control Interface API Calls to Signal Events

public void timerStart() {

controlInterfaceSignal.signal (CommandIds.TIMER_START);
}
public void timerStop() {

controlInterfaceSignal.signal (CommandIds.TIMER_STOP) ;
}
public void timerReset() {

controlInterfaceSignal.signal (CommandIds.TIMER_RESET);
}
public void timerQuit() {

controlInterfaceSignal.signal (CommandIds.TIMER_QUIT);
}

wraps the API call parameters for propagation to the appropriate signal event
handler. In the case of the example, a simple enumeration may be used to
encode the nature of the API call, as shown in Listing 9.2.

Given a suitable signal event parameter for each API call, it is then possible
to dispatch the calls via a signal callback, as illustrated in Listing 9.3. Note
that this example is simplified by mapping all of the API calls to a single signal.
In more complex applications, multiple different signal objects may be used in
order to increase modularity.

Once the control interface API calls have been converted to signal events they
can be handled via a suitable signalable object which is registered to receive the
generated signal callbacks. The onSignal callback method of such a signalable
object may be seen in Listing 9.4.

In this example, the commandId value which is passed as the signal param-
eter is used to differentiate between the different API calls. This allows the
appropriate control action to be carried out from the context of the main re-
actor thread, eliminating the need for additional synchronisation. Note that
a null controlId parameter is used to imply signal finalization on application
shutdown.
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Listing 9.4 Control Command Execution in Reactor Thread Context

public void onSignal(Signal<CommandIds> signal, CommandIds commandId) {

// Shutdown on signal finalization.
if (commandId == null) {
} else {

switch (commandId) {

// Start the timer.
case TIMER_START:

// Stop the timer.
case TIMER_STOP:

// Reset the timer.
case TIMER_RESET:

// Exit the timer stopwatch application.
case TIMER_QUIT:

This general pattern of using signal events to decouple control-side API calls
from updates to the model state should be employed by the model component
for all control interfaces. However, there is still considerable flexibility in terms
of specifying more complex signal parameter data objects or using multiple
signals to partition the control interface functionality.

9.2.2 Adding The View Interface

An approach to implementing a viewer interface using the Publisher-Subscriber
pattern has already been introduced as part of the discussion of signal events in
Section 4.4. In short, this relies on the application model component providing a
suitable update notification signal and a range of getter methods which expose
the current state of the published data. In the case of the simple stopwatch
example shown in Listing 9.5, this implies a single getter method which returns
the current elapsed time.

When implementing a viewer interface to the core application model, it is
necessary to make certain assumptions about the types of viewer component
which are supported. These assumptions lead to the following general rules
which should be followed when implementing the viewer interface:
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Listing 9.5 View Interface For Simple Stopwatch Example

public interface ApplicationView {
public Signal<Integer> getTimerUpdateSignal();
public int getTimerData();

¥

e Any modifications to the published data should be carried out in the
context of the main reactor thread.

e Callbacks which change the state of the published data should always leave
the data in an internally consistent state.

e All calls to the view interface getter functions should be made in the
context of the update notification signal callback.

e [t is assumed that any data returned by the view interface getter functions
may be cached by the view component, so copy on read should be used
for non-primitive data.

A key aspect of these assumptions is that the viewer component carries
out all rendering for a given update within the context of the update signal
notification callback. The implication of this is that the model view cannot
then be modified while the viewer is actively rendering the view data.

In certain circumstances it may not be viable to carry out all rendering within
the update notification callback — for example, when rendering to remote client
via a framework such as GWT. However, it is the responsibility of the viewer
component to deal with such issues, not the core application model.

Typically, GUI frameworks which support delayed rendering will need to
read back the view data in the context of the update notification callback and
then cache it for future rendering. In order to support this, all data returned
from view interface getter functions should be immutable, using ‘copy on read’
for non-native objects. Where this is not practicable, this should be explicitly
stated in the interface contract.

9.3 GUI Implementation Using Swing

It is often the case that individual GUI components can aggregate the roles of
both controller and viewer within the MVC pattern, and this is the case for the
simple stopwatch example presented here. In the example, the aggregate viewer
and controller class is called ViewerController and the full implementation is
provided in the swing examples package as SwingGuiExample.

9.3.1 Swing Controller Implementation

For the controller functionality of the ViewerController component, a number
of buttons are added to the GUI window for starting, stopping and resetting
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Listing 9.6 Adding Swing Control Buttons to the GUI

// Populate the content panel with the control buttons.
JButton startButton = new JButton("Start");
panel.add(startButton) ;

// Add action listeners to the control buttons and wire
// them up to the control interface.
startButton.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent event) {
appControl.timerStart();
}
B;

Listing 9.7 Adapting Swing Window Controls to Model Interface

// Create the basic frame, wiring up the window close event
// to the application shutdown control method.
frame = new JFrame();
frame.setSize (FRAME_WIDTH, FRAME_HEIGHT);
frame.setTitle("Reaction Stopwatch Example");
frame.addWindowListener (new WindowAdapter() {

public void windowClosing(WindowEvent e) {

appControl.timerQuit();

}

B

the stopwatch. These correspond directly to the timerStart, timerStop and
timerReset methods on the model’s control interface. Since the control inter-
face methods are thread safe, it is possible to call them directly from the context
of the GUI thread using a standard Swing ActionListener object as shown in
Figure 9.6.

When connecting control buttons to the model control interface, an anony-
mous instantiation of the ActionListener class is specialised by the addition
of the actionPerformed method, which simply invokes the required method
on the model control interface. In this example the control interface is named
appControl and is an instance of the ApplicationControl interface given in
Listing 9.1.

There is also the ‘close’ button on the window frame which corresponds
to the timerQuit method on the control interface. Again, this may be called
directly from the GUI thread using a standard Swing WindowAdapter object as
shown in Listing 9.7.
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Listing 9.8 Caching the Swing Stopwatch Data on Reaction Update

// Local version of the current stopwatch time.
private volatile String currentTime = "UNKNOWN";

// Receive application view updates via the signal callback.
public void onSignal(Signal<Integer> signal, Integer data) {
if (data == null) {
System.out.println("View interface shut down.");
} else {
int timeVal = appView.getTimerData();
updateCurrentTime (timeVal) ;
}
}

// Print out the current stopwatch time.
private void updateCurrentTime(int timeVal) {
DecimalFormat formatter = new DecimalFormat("00");
currentTime = "" + formatter.format(timeVal / 3600000) + ":"
+ formatter.format ((timeVal % 3600000) / 60000) + ":"
+ formatter.format((timeVal % 60000) / 1000) + "."
+ formatter.format((timeVal % 1000) / 10);
panel.repaint();

}

9.3.2 Swing Viewer Implementation

When implementing the viewer functionality using the Swing framework, it is
important to bear in mind the issues described in Section 9.2.2 with respect to
delayed rendering. In Swing, the process of painting the GUI components is
carried out in an independent thread which accepts asynchronous notifications
of changes to the presentational data. Therefore, the presentational data must
be cached on receiving update notifications from the main reactor thread.

In the example given here, the viewer component accesses the current model
state using the appView instance of the view interface previously shown in List-
ing 9.5. This provides access to a single item of presentational data, in the
form of the current stopwatch timer value. In this case the raw timer data is
not cached directly, but pre-formatted within the context of the Reaction view
update callback. This is illustrated by the code fragment shown in Listing 9.8.

Once the cached presentational data has been updated, the Swing framework
is notified of the changes using the panel repaint request method. This causes
the displayed view of the data to be repainted at an arbitrary point in the future,
within the context of an arbitrary Swing framework redraw thread.

The procedure used to repaint the displayed view from within the context
of the Swing framework redraw thread is a standard text rendering routine, as
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Listing 9.9 Rendering the Stopwatch Data on Swing Paint Request

// Create a panel with a dedicated ’paintComponent’ method
// which prints the current stopwatch time.
panel = new JPanel() {
private Font f = new Font("Sans", Font.BOLD, 24);
public void paintComponent (Graphics g) {
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D) g;
g2.setFont (£);
Rectangle2D bounds = f.getStringBounds
(currentTime, g2.getFontRenderContext());
g2.drawString(currentTime,
(int) (getWidth() - bounds.getWidth()) / 2,
2 * (int) (getHeight() - bounds.getHeight()) / 3);
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Figure 9.1: Running the Swing Based Stopwatch Example

shown in Listing 9.9. This takes the currently cached string representation of
the stopwatch time and renders it to the screen at a specific position in the
displayed window.

The combination of the buttons added to the GUI window in Section 9.3.1
and the rendered version of the current stopwatch time yields the window display
shown in Figure 9.1. This looks and behaves just like a conventional Swing based
application, even though the underlying Reaction based model is completely
independent of the GUI toolkit being used.
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Listing 9.10 Adding JavaFX Control Buttons to the GUI

// Create the horizontal row of control buttons.
TilePane buttonBox = new TilePane(Orientation.HORIZONTAL);
buttonBox.getStyleClass () .add("control-box");

// Create the start button and connect it to the timer start hook.
Button startButton = new Button("Start");
startButton.getStyleClass() .add("control-button");
startButton.setMaxWidth(Double.MAX_VALUE) ;
startButton.setOnAction(new EventHandler<ActionEvent>() {
@0verride
public void handle(ActionEvent event) {
appControl.timerStart();
}
B
buttonBox.getChildren() .add(startButton) ;

9.4 GUI Implementation Using JavaFX

Recent Java releases now include a new user interface framework in the form of
JavaFX [8]. This is huge improvement over the ageing Swing/AWT framework
and provides a much more suitable platform for implementing the GUI portion
of Reaction based applications.

The JavaFX example presented here makes use of the same underlying appli-
cation model as the previous Swing based example, replacing only the viewer and
controller parts of the application. As for the Swing based example, the viewer
and controller roles are combined into a single class called ViewerController
and the full implementation is included in the javafx examples package as
JavaFxExample.

9.4.1 JavaFX Controller Implementation

As for the previous Swing based example, a number of buttons are added to
the GUI window for starting, stopping and resetting the stopwatch. These
correspond directly to the timerStart, timerStop and timerReset methods
on the model’s control interface. Since the control interface methods are thread
safe, it is possible to call them directly from the context of the GUI thread using
a standard action event handler object as shown in Listing 9.10.

In the example, the control buttons are all added to a horizontal box, which
will place them in the TilePane widget container. The appearance of the en-
closing box and the control buttons themselves is configured using the specified
style classes from the JavaFxExample.css stylesheet

There is also the ‘close’ button on the window frame which corresponds
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Listing 9.11 Adapting JavaFX Window Controls to Model Interface

// Handle window close events.
stage.setOnCloseRequest (new EventHandler<WindowEvent>() {
public void handle(WindowEvent windowEvent) {
if (windowEvent.getEventType() ==
WindowEvent .WINDOW_CLOSE_REQUEST) {
appControl.timerQuit();
}
}
b;

Listing 9.12 Binding a JavaFX String Property to Viewer Text

// Create a pane to hold the current timer string and bind the string

// value to the observable timer value.

StackPane timerValuePane = new StackPane();

timerValuePane.getStyleClass() .add("timer-pane");

Text timerValueText = new Text();

timerValueText.getStyleClass() .add("timer-text");

timerValueText.textProperty() .bind(
observableTimer.getObservableTimerString());

timerValuePane.getChildren() .add(timerValueText) ;

to the timerQuit method on the control interface. Again, this may be called
directly from the GUI thread using a standard JavaFX window event handler
object as shown in Listing 9.11.

9.4.2 JavaFX Viewer Implementation

The implementation of viewer functionality in JavaFX is made much easier
by the support for value binding to user interface elements. This means that
the application developer does not need to explicitly manage the process of
redrawing the user interface view. However, JavaFX still imposes the restriction
that updates to bound property values must take place in the context of the
main Java FX thread.

In the example, the signalable interface to the application view and the
observable timer property value used by the JavaFX framework are wrapped in
a separate class called ObservableTimer. This allows the observable timer value
to be bound to the JavaFX user interface element as shown in Listing 9.12. Once
this binding has been established, any changes to the observable timer string
value will automatically cause the displayed timer text to be redrawn.
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Listing 9.13 Caching the JavaFX Stopwatch Data on Reaction Update

// Receive application view updates via the signal callback.
public synchronized void onSignal(Signal<Integer> signalld,
Integer timerUpdateSequence) {
if (timerUpdateSequence == null) {
System.out.println("View interface shut down.");
} else {
int timeVal = appView.getTimerData() ;
DecimalFormat formatter = new DecimalFormat("00");
timerString = "" + formatter.format(timeVal / 3600000) + ":"
+ formatter.format ((timeVal % 3600000) / 60000) + ":"
+ formatter.format((timeVal % 60000) / 1000) + "."
+ formatter.format((timeVal % 1000) / 10);
Platform.runLater (this);
}
}

Listing 9.14 Updating the JavaFX Observable Stopwatch String Value

// Updates the value held by the observable string.
public synchronized void run() {
stringProperty.set(timerString) ;

}

The observable timer class manages the forwarding of updates from the
model to the JavaFX observable property updates which will trigger the user
interface to be updated. The first task is to convert the numeric timer value
to a string which is suitable for display, followed by a request to the JavaFX
framework to apply this change to the observable string property value from the
context of the main JavaFX thread.

The process of converting the integer timer value to a displayable string
is shown in Listing 9.13. After the display string has been formatted, the
Platform.runlLater call is made in order to schedule the Runnable.run method
for subsequent execution in the context of the JavaFX main thread.

The procedure used to update the observable string value from within the
context of the JavaFX main thread is shown in Listing 9.14. This takes the
currently cached string representation of the stopwatch time and updates the
observable string value which is bound to the user interface display.

The use of property binding in JavaFX provides for a much more elegant
viewer implementation than the equivalent Swing based code. Furthermore,
while all the styling associated with the Swing view has to be hardcoded into
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Listing 9.15 Applying JavaFX Styles to the Displayed Timer String

.timer-text {
-fx-fill: white;
-fx-font-family: "Arial Black";
-fx-font-size: 32;
-fx-font-weight: bold;
-fx-effect: innershadow(three-pass-box, rgba(0,0,0,0.7), 6, 0.0, 0, 2);

-
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Figure 9.2: Running the JavaFX Based Stopwatch Example

the painting callback, the JavaFX implementation does not need to contain any
formatting information at all.

In the JavaFX implementation, all of the text styling associated with the
viewer functionality is assigned using the styleClass method calls made when
declaring the text elements in Listing 9.12. These identify the text styling
to be used as defined in the associated stylesheet. For the purposes of the
example, some simple effects can be applied to the displayed string as shown in
Listing 9.15.

The combination of the buttons added to the GUI window in Section 9.4.1
and the rendered version of the current stopwatch time yields the window display
shown in Figure 9.2. This has a much more polished look than the corresponding
Swing application, despite the fact that much less code is required to produce the
desired result. However, both applications still share the same core application
code - further emphasising the independence of the underlying Reaction based
model from the GUI toolkit being used.
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